E-Print Archive

There are 4524 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Method for Data-Driven Simulations of Evolving Solar Active Regions View all abstracts by submitter

Marc DeRosa   Submitted: 2012-08-14 18:20

We present a method for performing data-driven simulations of solar active region formation and evolution. The approach is based on magnetofriction, which evolves the induction equation assuming the plasma velocity is proportional to the Lorentz force. The simulations of active region coronal field are driven by temporal sequences of photospheric magnetograms from the Helioseismic Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). Under certain conditions, the data-driven simulations produce flux ropes that are ejected from the modeled active region due to loss of equilibrium. Following the ejection of flux ropes, we find an enhancement of the photospheric horizontal field near the polarity inversion line. We also present a method for the synthesis of mock coronal images based on a proxy emissivity calculated from the current density distribution in the model. This method yields mock coronal images that are somewhat reminiscent of images of active regions taken by instruments such as SDO?s Atmospheric Imaging Assembly (AIA) at extreme ultraviolet wavelengths.

Authors: Mark C. M. Cheung & Marc L. DeRosa
Projects: SDO-HMI

Publication Status: ApJ (2012) 757 147
Last Modified: 2015-08-21 23:31
Go to main E-Print page  The Relationship between the Sudden Change of the Lorentz Force and the Magnitude of Associated Flares  Turbulent Coronal Heating Mechanisms: Coupling of Dynamics and Thermodynamics  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University