E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetic Flux and Helicity of Magnetic Clouds View all abstracts by submitter

Pascal Demoulin   Submitted: 2015-08-31 04:23

Magnetic clouds (MCs) are formed by flux ropes (FRs) launched from the Sun as part of coronal mass ejections (CMEs). They carry away an important amount of magnetic flux and helicity. The main aim of this study is to quantify these quantities from insitu measurements of MCs at 1 AU. The fit of these data by a local FR model provides the axial magnetic field strength, the radius, the magnetic flux and the helicity per unit length along the FR axis. We show that these quantities are statistically independent of the position along the FR axis. We then derive the generic shape and length of the FR axis from two sets of MCs. These results improve the estimation of magnetic helicity. Next, we evaluate the total magnetic flux and helicity crossing the sphere of radius of 1 AU, centered at the Sun, per year and during a solar cycle. We also include in the study two sets of small FRs which do not have all the typical characteristics of MCs. While small FRs are at least ten times more numerous than MCs, the magnetic flux and helicity are dominated by the contribution from the larger MCs. They carry in one year the magnetic flux of about 25 large active regions and the magnetic helicity of 200 of them. MCs carry away an amount of unsigned magnetic helicity comparable to the one estimated for the solar dynamo and the one measured in emerging active regions.

Authors: Demoulin P., Janvier M., Dasso S.
Projects: Wind

Publication Status: Solar Physics (in press)
Last Modified: 2015-08-31 09:42
Go to main E-Print page  Spectroscopic Signatures Related to a Sunquake   	Depth-dependent global properties of a sunspot observed by Hinode (SOT/SP)  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides
Blue wing enhancement of the chromospheric Mg II h and k lines in a solar flare
Finite amplitude transverse oscillations of a magnetic rope
Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and its Heating Evolution with VAULT2.0 and IRIS Observations
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
Implosive collapse about magnetic null points: A quantitative comparison between 2D and 3D nulls
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Strong non-radial propagation of energetic electrons in solar corona
Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory
LOFAR observations of the quiet solar corona
Statistics of "Cold" Early Impulsive Solar Flares in X-ray and Microwave domains
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673
An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
On the detection of coronal dimmings and the extraction of their characteristic properties
Plasma diagnostics of coronal dimming events
Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating
Observationally quantified reconnection providing a viable mechanism for active region coronal heating

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University