E-Print Archive

There are 3812 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic Flux and Helicity of Magnetic Clouds View all abstracts by submitter

Pascal Demoulin   Submitted: 2015-08-31 04:23

Magnetic clouds (MCs) are formed by flux ropes (FRs) launched from the Sun as part of coronal mass ejections (CMEs). They carry away an important amount of magnetic flux and helicity. The main aim of this study is to quantify these quantities from insitu measurements of MCs at 1 AU. The fit of these data by a local FR model provides the axial magnetic field strength, the radius, the magnetic flux and the helicity per unit length along the FR axis. We show that these quantities are statistically independent of the position along the FR axis. We then derive the generic shape and length of the FR axis from two sets of MCs. These results improve the estimation of magnetic helicity. Next, we evaluate the total magnetic flux and helicity crossing the sphere of radius of 1 AU, centered at the Sun, per year and during a solar cycle. We also include in the study two sets of small FRs which do not have all the typical characteristics of MCs. While small FRs are at least ten times more numerous than MCs, the magnetic flux and helicity are dominated by the contribution from the larger MCs. They carry in one year the magnetic flux of about 25 large active regions and the magnetic helicity of 200 of them. MCs carry away an amount of unsigned magnetic helicity comparable to the one estimated for the solar dynamo and the one measured in emerging active regions.

Authors: Demoulin P., Janvier M., Dasso S.
Projects: Wind

Publication Status: Solar Physics (in press)
Last Modified: 2015-08-31 09:42
Go to main E-Print page  Spectroscopic Signatures Related to a Sunquake   	Depth-dependent global properties of a sunspot observed by Hinode (SOT/SP)  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Evolution of Photospheric Flow and Magnetic Fields Associated with The 2015 June 22 M6.5 Flare
Spatially inhomogeneous acceleration of electrons in solar flares
Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014
The origin, early evolution and predictability of solar eruptions
Polar Field Correction for HMI Line-of-Sight Synoptic Data
Relationship between Intensity of White-Light Flares and Proton Flux of Solar Energetic Particles
Spectroscopic Observations of a Current Sheet in a Solar Flare
IRIS Observations of Spicules and Structures Near the Solar Limb
Strong Transverse Photosphere Magnetic Fields and Twist in Light Bridge Dividing Delta Sunspot of Active Region 12673
Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare
Spectroscopic diagnostics of the non-Maxwellian κ-distributions using SDO/EVE observations of the 2012 March 7 X-class flare
Transient rotation of photospheric vector magnetic fields associated with a solar flare
Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares
A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures
Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model
Solar energetic particles and radio burst emission
A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope
Two-step solar filament eruptions
Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University