E-Print Archive

There are 4099 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase

Nishu Karna   Submitted: 2015-09-14 11:09

We present a survey of 429 coronal prominence cavities found between 2010 May and 2015 February using the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly limb synoptic maps. We examined correlations between each cavity's height, width, and length. Our findings showed that around 38% of the cavities were prolate, 27% oblate, and 35% circular in shape. The lengths of the cavities ranged from 0.06 to 2.9 {R}. When a cavity is longer than 1.5 {R}, it has a narrower height range (0.1-0.3 {R}), whereas when the cavity was shorter than 1.5 {R}, it had a wider height range (0.07-0.5 {R}). We find that the overall three-dimensional topology of the long, stable cavities can be characterized as a long tube with an elliptical cross section. We also noted that the circular and oblate cavities are longer in length than the prolate cavities. We also studied the physical mechanisms behind the cavity drift toward the pole and found it to be tied to the meridional flow. Finally, by observing the evolution of the cavity regions using SDO/Helioseismic Magnetic Imager (HMI) surface magnetic field observations, we found that the cavities formed a belt near the polar coronal hole boundary; we call this the cavity belt. Our results showed that the cavity belt migrated toward higher latitude over time and the cavity belt disappeared after the polar magnetic field reversal. This result shows that cavity evolution provides new insight into the solar cycle.

Authors: N. Karna, W. D. Pesnell, and J. Zhang

Publication Status: Published (Sep 8, 2015)
Last Modified: 2015-09-14 16:09
Go to main E-Print page  Heating and cooling of coronal loops observed by SDO  STUDY OF THE 3D GEOMETRIC STRUCTURE AND TEMPERATURE OF A CORONAL CAVITY USING THE LIMB SYNOPTIC MAP METHOD  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University