E-Print Archive

There are 4451 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Dynamical small-scale magnetic islands as a source of local acceleration of particles in the solar wind View all abstracts by submitter

Valentina Zharkova   Submitted: 2015-11-01 10:31

We present observations of energetic particle flux increases up to 1 MeV at 1 AU, which cannot be associated with ordinary mechanisms of particle acceleration, such as acceleration at shocks or at the Sun. Such unusual energetic particle events very likely have a local origin. Multi-spacecraft observations show that numerous cases of energetic particle flux enhancements and spikes correspond to passages of spacecraft through areas filled with magnetic islands with a typical width ~0.010.001AU that experience dynamical merging or/and contraction. The presence of magnetic islands inside magnetically confined cavities in the solar wind may lead to local particle energization, especially in the case when the particles have already been pre-accelerated to keV energies, for example, at shocks or due to magnetic reconnection at the heliospheric current sheet. We consider different magnetic configurations that provide favourable conditions for both the appearance of small-scale magnetic islands and their confinement.

Authors: O. V. Khabarova, G. P. Zank, G. Li, J. A. le Roux, G. M.Webb, A. Dosch, O. E. Malandraki, Zharkova V.V.
Projects: None

Publication Status: Journal of Physics: Conference Series (JPCS), 642, 012033
Last Modified: 2015-11-02 10:52
Go to main E-Print page  Heartbeat of the Sun from Principal Component Analysis and prediction of solar activity on a millennium timescale  Particle acceleration in 3D single current sheets formed in the solar corona and heliosphere: PIC approach  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205
Homologous Coronal Mass Ejections Caused by Recurring Formation and Disruption of Current Sheet within a Sheared Magnetic Arcade
Propagating Oscillations in the Lower Atmosphere Under Coronal Holes
Using Flare-Induced Modulation of Three- and Five-Minute Oscillations for Studying Wave Propagation in the Solar Atmosphere
Plasma dynamics in the flaring loop observed by RHESSI
Multi-instrument STIX microflare study
Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper II: Nonlinear Simulations
Multi-Passband Observations of A Solar Flare over the He I 10830 line
Multi-wavelength quasi-periodic pulsations in a stellar superflare
Probable detection of an eruptive filament from a superflare on a solar-type star
Global Energetics in Solar Flares. XIII. The Neupert Effect and Acceleration of Coronal Mass Ejections
Enhanced Phase Mixing of Torsional Alfvén Waves in Stratified and Divergent Solar Coronal Structures, Paper I: Linear Solutions
Variations of the Internal Asymmetries of Sunspot Groups During their Decay
Partial Eruption, Confinement, and Twist Buildup and Release of a Double-decker Filament
Overdense Threads in the Solar Corona Induced by Torsional Alfvén Waves
Implications of spicule activity on coronal loop heating and catastrophic cooling
The Magnetic Origin of Solar Campfires
On the evolution of a sub-C class flare: a showcase for the capabilities of the revamped Catania Solar Telescope
Direct evidence that twisted flux tube emergence creates solar active regions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University