E-Print Archive

There are 4594 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
On the robustness of the pendulum model for large-amplitude longitudinal oscillations in prominences View all abstracts by submitter

Manuel Luna   Submitted: 2015-12-20 01:47

Large-amplitude longitudinal oscillations (LALOs) in prominences are spectacular manifestations of the solar activity. In such events nearby energetic disturbances induce periodic motions on filaments with displacements comparable to the size of the filaments themselves and with velocities larger than 20 km s-1. The pendulum model, in which the gravity projected along a rigid magnetic field is the restoring force, was proposed to explain these events. However, it can be objected that in a realistic situation where the magnetic field reacts to the mass motion of the heavy prominence, the simplified pendulum model could be no longer valid. We have performed non-linear time-dependent numerical simulations of LALOs considering a dipped magnetic field line structure. In this work we demonstrate that for even relatively weak magnetic fields the pendulum model works very well. We therefore validate the pendulum model and show its robustness, with important implications for prominence seismology purposes. With this model it is possible to infer the geometry of the dipped field lines that support the prominence.

Authors: Luna, M.; Terradas, J.; Khomenko, E.; Collados, M.; de Vicente, A.
Projects: None

Publication Status: Accepted for publication in The Astrophysical Journal
Last Modified: 2015-12-20 12:40
Go to main E-Print page  Quasi-periodic Fast-mode Magnetosonic Wave Trains Within Coronal Waveguides Associated with Flares and CMEs  Propagation of Solar Energetic Particles during Multiple Coronal Mass Ejection Events  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University