E-Print Archive

There are 4553 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Quasi-periodic Fast-mode Magnetosonic Wave Trains Within Coronal Waveguides Associated with Flares and CMEs View all abstracts by submitter

Wei Liu   Submitted: 2015-12-22 22:42

Quasi-periodic, fast-mode, propagating wave trains (QFPs) are a new observational phenomenon recently discovered in the solar corona by the Solar Dynamics Observatory with extreme ultraviolet (EUV) imaging observations. They originate from flares and propagate at speeds up to ~2000 km s-1 within funnel-shaped waveguides in the wakes of coronal mass ejections (CMEs). QFPs can carry sufficient energy fluxes required for coronal heating during their occurrences. They can provide new diagnostics for the solar corona and their associated flares. We present recent observations of QFPs focusing on their spatio-temporal properties, temperature dependence, and statistical correlation with flares and CMEs. Of particular interest is the 2010-Aug-01 C3.2 flare with correlated QFPs and drifting zebra and fiber radio bursts, which might be different manifestations of the same fast-mode wave trains. We also discuss the potential roles of QFPs in accelerating and/or modulating the solar wind.

Authors: Wei Liu, Leon Ofman, Brittany Broder, Marian Karlický, and Cooper Downs
Projects: IRIS,RHESSI,SDO-AIA

Publication Status: Accepted to the Proceedings of the 14th International Solar Wind Conference
Last Modified: 2015-12-23 12:23
Go to main E-Print page  Last news on zebra pattern  On the robustness of the pendulum model for large-amplitude longitudinal oscillations in prominences  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point
Characterising fast-time variations in the hard X-ray time profiles of solar flares using Solar Orbiter's STIX
The quiet sun at mm wavelengths as seen by ALMA
Explosive Events in the Quiet Sun Near and Beyond the Solar Limb Observed with the Interface Region Imaging Spectrograph (IRIS)
Multi-stage reconnection powering a solar coronal jet
A Statistical Analysis of Magnetic Field Changes in the Photosphere during Solar Flares Using High-cadence Vector Magnetograms and Their Association with Flare Ribbons
Numerical Study on Excitation of Turbulence and Oscillation in Above-the-loop-top Region of a Solar Flare
Oscillatory reconnection as a plasma diagnostic in the solar corona
The independence of oscillatory reconnection periodicity from the initial pulse
Oscillatory Reconnection of a 2D X-point in a hot coronal plasma
Formation Of The Lyman Continuum During Solar Flares
MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field
Unfolding Drift Effects for Cosmic Rays over the Period of the Sun's Magnetic Field Reversal
Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere
Solar Orbiter and SDO Observations, and Bifrost MHD Simulations of Small-scale Coronal Jets
Dominance of Bursty over Steady Heating of the 48 MK Coronal Plasma in a Solar Active Region: Quantification Using Maps of Minimum, Maximum, and Average Brightness
Solar flare hard X-rays from the anchor points of an eruptive filament
Plasmoids, Flows, and Jets During Magnetic Reconnection in a Failed Solar Eruption
Connecting Chromospheric Condensation Signatures to Reconnection-driven Heating Rates in an Observed Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University