E-Print Archive

There are 4080 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Observations of multiple blobs in homologous solar coronal jets in closed loops View all abstracts by submitter

Qingmin Zhang   Submitted: 2016-01-18 20:58

Coronal bright points (CBPs) and jets are ubiquitous small-scale brightenings that are often associated with each other. In this paper, we report our multiwavelength observations of two groups of homologous jets. The first group was observed by the Extreme-Ultraviolet Imager (EUVI) aboard the behind Solar TErrestrial RElations Observatory (STEREO) spacecraft in 171 Å and 304 Å on 2014 September 10, from a location where data from the Solar Dynamic Observatory (SDO) could not observe. The jets (J1-J6) recurred for six times with intervals of 5-15 minutes. They originated from the same primary CBP (BP1) and propagated in the northeast direction along large-scale, closed coronal loops. Two of the jets (J3 and J6) produced sympathetic CBPs (BP2 and BP3) after reaching the remote footpoints of the loops. The time delays between the peak times of BP1 and BP2 (BP3) are 240±75 s (300±75 s). The jets were not coherent. Instead, they were composed of bright and compact blobs. The sizes and apparent velocities of the blobs are 4.5-9 Mm and 140-380 km s-1, respectively. The arrival times of the multiple blobs in the jets at the far-end of the loops indicate that the sympathetic CBPs are caused by jet flows rather than thermal conduction fronts. The second group was observed by the Atmospheric Imaging Assembly aboard SDO in various wavelengths on 2010 August 3. Similar to the first group, the jets originated from a short-lived bright point (BP) at the boundary of active region 11092 and propagated along a small-scale, closed loop before flowing into the active region. Several tiny blobs with sizes of ~1.7 Mm and apparent velocity of ~238 km s-1 were identified in the jets. We carried out the differential emission measure (DEM) inversions to investigate the temperatures of the blobs, finding that the blobs were multithermal with average temperature of 1.8-3.1 MK. The estimated number densities of the blobs were (1.7-2.8)x109 cm-3.

Authors: Q. M. Zhang, H. S. Ji, and Y. N. Su
Projects: SDO-AIA

Publication Status: accepted for publication in Solar Physics
Last Modified: 2016-01-20 12:25
Go to main E-Print page  The Impact of the Revised Sunspot Record on Solar Irradiance  Reconstructions  Intense bipolar structures from stratified helical dynamos  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University