E-Print Archive

There are 3991 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Observations of multiple blobs in homologous solar coronal jets in closed loops View all abstracts by submitter

Qingmin Zhang   Submitted: 2016-01-18 20:58

Coronal bright points (CBPs) and jets are ubiquitous small-scale brightenings that are often associated with each other. In this paper, we report our multiwavelength observations of two groups of homologous jets. The first group was observed by the Extreme-Ultraviolet Imager (EUVI) aboard the behind Solar TErrestrial RElations Observatory (STEREO) spacecraft in 171 Å and 304 Å on 2014 September 10, from a location where data from the Solar Dynamic Observatory (SDO) could not observe. The jets (J1-J6) recurred for six times with intervals of 5-15 minutes. They originated from the same primary CBP (BP1) and propagated in the northeast direction along large-scale, closed coronal loops. Two of the jets (J3 and J6) produced sympathetic CBPs (BP2 and BP3) after reaching the remote footpoints of the loops. The time delays between the peak times of BP1 and BP2 (BP3) are 240±75 s (300±75 s). The jets were not coherent. Instead, they were composed of bright and compact blobs. The sizes and apparent velocities of the blobs are 4.5-9 Mm and 140-380 km s-1, respectively. The arrival times of the multiple blobs in the jets at the far-end of the loops indicate that the sympathetic CBPs are caused by jet flows rather than thermal conduction fronts. The second group was observed by the Atmospheric Imaging Assembly aboard SDO in various wavelengths on 2010 August 3. Similar to the first group, the jets originated from a short-lived bright point (BP) at the boundary of active region 11092 and propagated along a small-scale, closed loop before flowing into the active region. Several tiny blobs with sizes of ~1.7 Mm and apparent velocity of ~238 km s-1 were identified in the jets. We carried out the differential emission measure (DEM) inversions to investigate the temperatures of the blobs, finding that the blobs were multithermal with average temperature of 1.8-3.1 MK. The estimated number densities of the blobs were (1.7-2.8)x109 cm-3.

Authors: Q. M. Zhang, H. S. Ji, and Y. N. Su
Projects: SDO-AIA

Publication Status: accepted for publication in Solar Physics
Last Modified: 2016-01-20 12:25
Go to main E-Print page  The Impact of the Revised Sunspot Record on Solar Irradiance  Reconstructions  Intense bipolar structures from stratified helical dynamos  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?
The development of lower-atmosphere turbulence early in a solar flare
Determining the parameter for the linear force-free magnetic field model with multi-dipolar configurations using deep neural networks
No unique solution to the seismological problem of standing kink MHD waves
Untwisting and Disintegration of a Solar Filament Associated with Photospheric Flux Cancellation
Modeling of the sunspot-associated microwave emission using a new method of DEM inversion
Energy transport and heating by torsional Alfvén waves propagating from the photosphere to the corona in the quiet Sun
A Two-Step Magnetic Reconnection in a Confined X-class Flare in Solar Active Region 12673
Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots
IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations
Study of current sheets in the wake of two crossing filaments eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University