E-Print Archive

There are 4115 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Suppression of parallel transport in turbulent magnetized plasmas and its impact on non-thermal and thermal aspects of solar flares View all abstracts by submitter

Eduard Kontar   Submitted: 2016-03-30 02:14

The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

Authors: Bian, Nicolas H., Kontar, Eduard P., and Emslie, A. Gordon
Projects: RHESSI,SDO-AIA

Publication Status: accepted to ApJ
Last Modified: 2016-03-30 20:55
Go to main E-Print page  Stochastic transients as a source of quasi-periodic processes in the solar atmosphere  The First X-ray Imaging Spectroscopy of Quiescent Solar Active Regions with NuSTAR  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Non-Stationary Fast-Driven Self-Organized Criticality in Solar Flares
Global Energetics of Solar Flares. IX. Refined Magnetic Modeling
The Solar Orbiter SPICE instrument - An extreme UV imaging spectrometer
Anisotropic Radio-Wave Scattering and the Interpretation of Solar Radio Emission Observations
Large-amplitude quasi-periodic pulsations as evidence of impulsive heating in hot transient loop systems detected in the EUV with SDO/AIA
Dynamic Evolution of Current Sheets, Ideal Tearing, Plasmoid Formation and Generalized Fractal Reconnection Scaling Relations
Characteristics of solar wind rotation
A Study of Pre-Flare Solar Coronal Magnetic Fields: Magnetic Flux Ropes
New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat
MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System
The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission
A Statistical Study of Solar Filament Eruptions That Forms High-Speed Coronal Mass Ejections
Reversed dynamo at small scales and large magnetic Prandtl number
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University