E-Print Archive

There are 4099 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Tiny Eruptive Filament as a Flux-Rope Progenitor and Driver of a Large-Scale CME and Wave View all abstracts by submitter

Victor Grechnev   Submitted: 2016-04-04 21:36

A solar eruptive event SOL2010-06-13 observed with the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) has been extensively discussed in the contexts of the CME development and an associated extreme-ultraviolet (EUV) wave-like transient in terms of a shock driven by the apparent CME rim. Continuing the analysis of this event, we have revealed an erupting flux rope, studied its properties, and detected wave signatures inside the developing CME. These findings have allowed us to establish new features in the genesis of the CME and associated EUV wave and to reconcile all of the episodes into a single causally-related sequence. (1) A hot 11 MK flux rope developed from the structures initially associated with a compact filament system. The flux rope expanded with an acceleration of up to 3 km s-2 one minute before a hard X-ray burst and earlier than any other structures, reached a velocity of 420 km s-1, and then decelerated to about 50 km s-1. (2) The CME development was driven by the expanding flux rope. Closed coronal structures above the rope got sequentially involved in the expansion from below upwards, came closer together, and apparently disappeared to reveal their common envelope, the visible rim, which became the outer boundary of the cavity. The rim was probably associated with the separatrix surface of a magnetic domain, which contained the pre-eruptive filament. (3) The rim formation was associated with a successive compression of the upper active-region structures into the CME frontal structure (FS). When the rim was formed, it resembled a piston. (4) The disturbance responsible for the consecutive CME formation episodes was excited by the flux rope inside the rim, and then propagated outward. EUV structures arranged at different heights started to accelerate, when their trajectories in the distance-time diagram were crossed by that of the fast front of this disturbance. (5) Outside the rim and FS, the disturbance propagated like a blast wave, manifesting in a type II radio burst and a leading part of the EUV transient. Its main, trailing part was the FS, which consisted of swept-up 2 MK coronal loops enveloping the expanding rim. The wave decelerated and decayed into a weak disturbance soon afterwards, being not driven by the trailing piston, which slowed down.

Authors: V.V. Grechnev, A.M. Uralov, A.A. Kochanov, I.V. Kuzmenko, D.V. Prosovetsky, Ya.I. Egorov, V.G. Fainshtein, L.K. Kashapova

Publication Status: Accepted for publication in Solar Physics. DOI: 10.1007/s11207-016-0888-z
Last Modified: 2016-04-06 08:20
Go to main E-Print page  Stereoscopic Observation of Slipping Reconnection in A Double Candle-Flame-Shaped Solar Flare  Active Latitude Oscillations Observed on the Sun  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University