E-Print Archive

There are 4021 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Explosive Chromospheric Evaporation in a Circular-ribbon Flare View all abstracts by submitter

Qingmin Zhang   Submitted: 2016-05-10 21:13

In this paper, we report our multiwavelength observations of the C4.2 circular-ribbon flare in active region (AR) 12434 on 2015 October 16. The short-lived flare was associated with positive magnetic polarities and a negative polarity inside, as revealed by the photospheric line-of-sight magnetograms. Such magnetic pattern is strongly indicative of a magnetic null point and spine-fan configuration in the corona. The flare was triggered by the eruption of a mini-filament residing in the AR, which produced the inner flare ribbon (IFR) and the southern part of a closed circular flare ribbon (CFR). When the eruptive filament reached the null point, it triggered null point magnetic reconnection with the ambient open field and generated the bright CFR and a blowout jet. Raster observations of the Interface Region Imaging Spectrograph (IRIS) show plasma upflow at speed of 35-120 km s-1 in the Fe XXI 1354.09 Å line (log T≈7.05) and downflow at speed of 10-60 km s-1 in the Si IV 1393.77 Å line (log T≈4.8) at certain locations of the CFR and IFR during the impulsive phase of flare, indicating explosive chromospheric evaporation. Coincidence of the single HXR source at 12-25 keV with the IFR and calculation based on the thick-target model suggest that the explosive evaporation was most probably driven by nonthermal electrons.

Authors: Q. M. Zhang, D. Li, Z. J. Ning, Y. N. Su, H. S. Ji and Y. Guo
Projects: IRIS

Publication Status: Accepted for publication in ApJ
Last Modified: 2016-05-11 08:52
Go to main E-Print page  Interaction of Two Filament Channels of Different Chiralities  The Formation and Early Evolution of a Coronal Mass Ejection and its Associated Shock Wave on 2014 January 8  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University