E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetic reconnection between a solar filament and nearby coronal loops View all abstracts by submitter

Leping Li   Submitted: 2016-05-12 08:55

Magnetic reconnection between a solar filament and nearby coronal loops | Magnetic reconnection, the rearrangement of magnetic field topology, is a fundamental physical process in magnetized plasma systems all over the universe. Its process is difficult to be directly observed. Coronal structures, such as coronal loops and filament spines, often sketch the magnetic field geometry and its changes in the solar corona. Here we show a highly suggestive observation of magnetic reconnection between an erupting solar filament and its nearby coronal loops, resulting in changes in connection of the filament. X-type structures form when the erupting filament encounters the loops. The filament becomes straight, and bright current sheets form at the interfaces with the loops. Many plasmoids appear in these current sheets and propagate bi-directionally. The filament disconnects from the current sheets, which gradually disperse and disappear, reconnects to the loops, and becomes redirected to the loop footpoints. This evolution of the filament and the loops suggests successive magnetic reconnection predicted by theories but rarely detected with such clarity in observations. Our results on the formation, evolution, and disappearance of current sheets, confirm three-dimensional magnetic reconnection theory and have implications for the evolution of dissipation regions and the release of magnetic energy for reconnection in many magnetized plasma systems.

Authors: Leping Li, Jun Zhang, Hardi Peter, Eric Priest, Huadong Chen, Lijia Guo, Feng Chen, Duncan Mackay

Publication Status: Nature Physics, 2016, DOI:10.1038/NPHYS3768
Last Modified: 2016-05-13 06:55
Go to main E-Print page  Nonlinear oscillations of coalescing magnetic flux ropes  Energetic characterisation and statistics of solar coronal brightenings  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University