E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
f-mode interaction with models of sunspot: near-field scattering and multifrequency effects View all abstracts by submitter

Khalil Daiffallah   Submitted: 2016-06-07 05:55

We use numerical simulations to investigate the interaction of an f-mode wave packet with small and large models of a sunspot in a stratified atmosphere. While a loose cluster model has been largely studied before, we focus in this study on the scattering from an ensemble of tightly compact tubes. We showed that the small compact cluster produces a slight distorted scattered wave field in the transverse direction, which can be attributed to the simultaneous oscillations of the pairs of tubes within the cluster aligned in a perpendicular direction to the incoming wave. However, no signature of a multiple-scattering regime has been observed from this model, while it has been clearly observable for the large compact cluster model. Furthermore, we pointed out the importance of the geometrical shape of the monolithic model on the interaction of f-mode waves with a sunspot in a high-frequency range (ν = 5 mHz). These results are a contribution to the observational effort to distinguish seismically between different configurations of magnetic flux tubes within sunspots and plage.

Authors: K.Daiffallah
Projects: None

Publication Status: Published in MNRAS (2016), Volume 460, Issue 1, p.1077-1085
Last Modified: 2016-06-07 17:22
Go to main E-Print page  Long-Term Tracking of Corotating Density Structures using Heliospheric Imaging  On-line Tools for Solar Data Compiled in the Debrecen Observatory and their Extensions with the Greenwich Sunspot Data   Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University