E-Print Archive

There are 4594 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Energetics of White-light Flares Observed by SDO/HMI and RHESSI View all abstracts by submitter

Nengyi Huang   Submitted: 2016-08-24 09:28

White-light (WL) flares have been observed and studied more than a century since the first discovery. However, some fundamental physics behind the brilliant emission remains highly controversial. One of the important facts in addressing the flare energetics is the spatial-temporal correlation between the white-light emission and the hard X-ray radiation, presumably suggesting that the energetic electrons are the energy sources. In this study, we present a statistical analysis of 25 strong flares (greater than and equal to M5) observed simultaneously by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Among these events, WL emission was detected by SDO/HMI in 13 flares, associated with HXR emission. To quantitatively describe the strength of WL emission, equivalent area (EA) is defined as the integrated contrast enhancement over the entire flaring area. Our results show that the equivalent area is inversely proportional to the HXR power index, indicating that stronger WL emission tends to be associated with larger population of high energy electrons. However, no obvious correlation is found between WL emission and flux of non-thermal electrons at 50 keV. For the other group of 13 flares without detectable WL emission, the HXR spectra are softer (larger power index) than those flares with WL emission, especially for the X-class flares in this group.

Authors: Huang, N., Xu, Y., Wang, H.

Publication Status: accepted
Last Modified: 2016-08-24 12:01
Go to main E-Print page  Spatio-temporal dynamics of sources of hard X-ray pulsations in solar flares  The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: spectrometer characterization techniques, spectrometer capabilities, and solar science objectives  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University