E-Print Archive

There are 4021 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Chromospheric Condensation and Quasi-periodic Pulsations in a Circular-ribbon Flare View all abstracts by submitter

Qingmin Zhang   Submitted: 2016-09-13 02:44

In this paper, we report our multiwavelength observations of the C3.1 circular-ribbon flare SOL2015-10-16T10:20 in active region (AR) 12434. The flare consisted of a circular flare ribbon (CFR), an inner flare ribbon (IFR) inside, and a pair of short parallel flare ribbons (PFRs). The PFRs located to the north of IFR were most striking in the Interface Region Imaging Spectrograph (IRIS) 1400 Å and 2796 Å images. For the first time, we observed the circular-ribbon flare in the Ca II H line of the Solar Optical Telescope (SOT) aboard Hinode, which has similar shape as observed in the Atmospheric Imaging Assembly (AIA) 1600 Å aboard the Solar Dynamic Observatory (SDO). Photospheric line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO show that the flare was associated with positive polarities and a negative polarity inside. The IFR and CFR were cospatial with the negative polarity and positive polarities, implying the existence of a magnetic null point (B=0) and the dome-like spine-fan topology. During the impulsive phase of the flare, ``two-step'' raster observations of IRIS with a cadence of 6 s and an exposure time of 2 s show plasma downflow at the CFR in the Si IV \lambda1402.77 line (log T≈4.8), suggesting chromospheric condensation. The downflow speeds first increased rapidly from a few km s-1 to the peak values of 45-52 km s-1, before decreasing gradually to the initial levels. The decay timescales of condensation were 3-4 minutes, indicating ongoing magnetic reconnection. Interestingly, the downflow speeds are positively correlated with logarithm of the Si IV line intensity and time derivative of the GOES soft X-ray (SXR) flux in 1-8 Å. The radio dynamic spectra are characterized by a type III radio burst associated with the flare, which implies that the chromospheric condensation was most probably driven by nonthermal electrons. Using an analytical expression and the peak Doppler velocity, we derived the lower limit of energy flux of the precipitating electrons, i.e., 0.65x1010 erg cm-2 s-1. The Si IV line intensity and SXR derivative show quasi-periodic pulsations with periods of 32-42 s, which are likely caused by intermittent null-point magnetic reconnections modulated by the fast wave propagating along the fan surface loops at a phase speed of 950-1250 km s-1. Periodic accelerations and precipitations of the electrons result in periodic heating observed in the Si IV line and SXR.

Authors: Q. M. Zhang, D. Li, and Z. J. Ning
Projects: IRIS

Publication Status: accepted for publication in ApJ
Last Modified: 2016-09-14 12:01
Go to main E-Print page  Evolution of the Magnetic Field Distribution of Active Regions  Helical Kink Instability in a Confined Solar Eruption  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University