E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Explosive events in active region observed by IRIS and SST/CRISP View all abstracts by submitter

Zhenghua Huang   Submitted: 2016-09-29 00:43

Transition-region explosive events (EEs) are characterized by non-Gaussian line profiles with enhanced wings at Doppler velocities of 50-150 km s-1. They are believed to be the signature of solar phenomena that are one of the main contributors to coronal heating. The aim of this study is to investigate the link of EEs to dynamic phenomena in the transition region and chromosphere in an active region. We analyze observations simultaneously taken by the Interface Region Imaging Spectrograph (IRIS) in the Si IV 1394Å line and the slit-jaw (SJ) 1400Å images, and the Swedish 1-m Solar Telescope (SST) in the Hα line. In total 24 events were found. They are associated with small-scale loop brightenings in SJ 1400Å images. Only four events show a counterpart in the Hα -35 km s-1 and Hα +35 km s-1 images. Two of them represent brightenings in the conjunction region of several loops that are also related to a bright region (granular lane) in the Hα -35km s-1 and Hα +35 km s-1 images. Sixteen are general loop brightenings that do not show any discernible response in the Hα images. Six EEs appear as propagating loop brightenings, from which two are associated with dark jet-like features clearly seen in the Hα -35 km s-1 images. We found that chromospheric events with jet-like appearance seen in the wings of the Hα line can trigger EEs in the transition region and in this case the IRIS Si IV 1394Å line profiles are seeded with absorption components resulting from Fe II and Ni II. Our study indicates that EEs occurring in active regions have mostly upper-chromosphere/transition-region origin. We suggest that magnetic reconnection resulting from the braidings of small-scale transition region loops is one of the possible mechanisms of energy release that are responsible for the EEs reported in this paper.

Authors: Z. Huang, M. S. Madjarska, E. M. Scullion, L.-D. Xia, J. G. Doyle, T. Ray
Projects: IRIS, Swedish Solar telescope (SST)

Publication Status: accepted for publication in MNRAS
Last Modified: 2016-10-03 12:31
Go to main E-Print page  Oscillation of current sheets in the wake of a flux rope eruption observed by the Solar Dynamics Observatory  A model for straight and helical solar jets: II. Parametric study of the plasma beta  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University