E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
"Dandelion" Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16 View all abstracts by submitter

Denis P. Cabezas   Submitted: 2017-01-02 19:41

Coronal disturbances associated with solar flares, such as Hα Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves are discussed herein in relation to magnetohydrodynamics fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a "dandelion", associated with the M1.6 flare that occurred on 2011 February 16 in the Hα images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the Hα images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the extreme ultraviolet images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead, we confirm that the winking filaments were activated by the EUV coronal wave.

Authors: D.P. Cabezas, L.M. Martinez, Y.J. Buleje, M. Ishitsuka, J.K. Ishitsuka, S. Morita, A. Asai, S. UeNo, T.T. Ishii, R. Kitai, S. Takasao, Y. Yoshinaga, K. Otsuji, and K. Shibata
Projects: None

Publication Status: Accepted by ApJ, Dec. 31, 2016
Last Modified: 2017-01-04 12:18
Go to main E-Print page  Flux-Rope Twist in Eruptive Flares and CMEs: due to Zipper and Main-Phase Reconnection  Flare-production potential associated with different sunspot groups  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University