E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Vector Magnetic Field Synoptic Charts from the Helioseismic and Magnetic Imager (HMI) View all abstracts by submitter

Yang Liu   Submitted: 2017-01-17 11:24

Vector magnetic field synoptic charts from the Helioseismic and Magnetic Imager (HMI) are now available for each Carrington Rotation (CR) starting from CR 2097 in May 2010. Synoptic charts are produced using 720-second cadence full-disk vector magnetograms remapped to Carrington coordinates. The vector field is derived from the Stokes parameters (I, Q, U, V) using a Milne-Eddington based inversion model. The 180° azimuth ambiguity is resolved using the Minimum Energy algorithm for pixels in active regions and for strong-field pixels (the field is greater than about 150 G) in quiet Sun regions. Three other methods are used for the rest of the pixels: the potential-field method, the radial-acute angle method, and the random method. The vector field synoptic charts computed using these three disambiguation methods are evaluated. The noise in the three components of vector magnetic field is generally much higher in the potential-field method charts. The component noise levels are significantly different in the radial-acute charts. However, the noise levels in the random-method charts are lower and comparable. The assumptions used in the potential-field and radial-acute methods to disambiguate the weak transverse field introduce bias that propagates differently into the three vector-field components, leading to unreasonable pattern and artifacts, whereas the random method appears not to introduce any systematic bias. The computed current sheet on the source surface, computed using the potential-field source-surface model applied to random-method charts, agrees with the best solution (the result computed from the synoptic charts with the minimum energy algorithm applied to each and every pixel in the vector magnetograms) much better than the other two. Differences in the synoptic charts determined with the best method and the random method are much smaller than those from the best method and the other two. This comparison indicates that the random method is better for vector field synoptic maps computed from near-central meridian data. Thus, the vector field synoptic charts provided by the Joint Science Operations Center (JSOC) are produced with the random method.

Authors: Yang Liu, J. T. Hoeksema, Xudong Sun, Keiji Hayashi
Projects: SDO-HMI

Publication Status: Solar Physics, accepted.
Last Modified: 2017-01-18 11:12
Go to main E-Print page  Time Evolution of Elemental Ratios in Solar Energetic Particle events  Microwave radio emissions as a proxy for coronal mass ejection speed in arrival predictions of interplanetary coronal mass ejections at 1 AU  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University