E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Vector Magnetic Field Measurements along a Cooled Stereo-imaged Coronal Loop View all abstracts by submitter

Tom Schad   Submitted: 2017-01-18 16:56

The variation of the vector magnetic field along structures in the solar corona remains unmeasured. Using a unique combination of spectropolarimetry and stereoscopy, we infer and compare the vector magnetic field structure and three-dimensional morphology of an individuated coronal loop structure undergoing a thermal instability. We analyze spectropolarimetric data of the He i λ10830 triplet (1s2s 3S1-1s2p 3P2,1,0) obtained at the Dunn Solar Telescope with the Facility Infrared Spectropolarimeter on 2011 September 19. Cool coronal loops are identified by their prominent drainage signatures in the He i data (redshifts up to 185 km s-1). Extinction of EUV background radiation along these loops is observed by both the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the Extreme Ultraviolet Imager on board spacecraft A of the Solar Terrestrial Relations Observatory, and is used to stereoscopically triangulate the loop geometry up to heights of 70 Mm (0.1R Sun) above the solar surface. The He i polarized spectra along this loop exhibit signatures indicative of atomic-level polarization, as well as magnetic signatures through the Hanle and Zeeman effects. Spectropolarimetric inversions indicate that the magnetic field is generally oriented along the coronal loop axis, and provide the height dependence of the magnetic field intensity. The technique we demonstrate is a powerful one that may help better understand the thermodynamics of coronal fine-structure magnetism.

Authors: T.A. Schad, M.J. Penn, H. Lin, P.G. Judge
Projects: National Solar Observatory (Sac Peak)

Publication Status: The Astrophysical Journal, Volume 833, Issue 1, article id. 5, 16 pp. (2016)
Last Modified: 2017-01-19 13:31
Go to main E-Print page  Coronal loop seismology using damping of standing kink oscillations by mode coupling II. additional physical effects and Bayesian analysis  Time Evolution of Elemental Ratios in Solar Energetic Particle events  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University