E-Print Archive

There are 4053 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Solar X-ray Limb View all abstracts by submitter

Marina Battaglia   Submitted: 2017-06-01 01:03

We describe a new technique to measure the height of the X-ray limb with observations from occulted X-ray flare sources as observed by the RHESSI (the Reuven Ramaty High-Energy Spectroscopic Imager) satellite. This method has model dependencies different from those present in traditional observations at optical wavelengths, which depend upon detailed modeling involving radiative transfer in a medium with complicated geometry and flows. It thus provides an independent and more rigorous measurement of the ''true'' solar radius, meaning that of the mass distribution. RHESSI's measurement makes use of the flare X-ray source's spatial Fourier components (the visibilities), which are sensitive to the presence of the sharp edge at the lower boundary of the occulted source. We have found a suitable flare event for analysis, SOL2011-10-20T03:25 (M1.7), and report a first result from this novel technique here. Using a 4-minute integration over the 3-25 keV photon energy range, we find RX-ray=964.05 ? 0.15-0.29 arcsec, where the uncertainties include statistical uncertainties from the method and a systematic error. The standard VAL-C model predicts a value of 963.48 arcsec, about 2σ below our value.

Authors: M. Battaglia, H. S. Hudson, G. J. Hurford, S. Krucker, R. A. Schwartz
Projects: RHESSI

Publication Status: ApJ, accepted
Last Modified: 2017-06-01 10:21
Go to main E-Print page  Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events  HIGH-RESOLUTION OBSERVATIONS OF DOWNFLOWS AT ONE END OF A PRE-ERUPTION FILAMENT  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear waves in a non-equilibrium ionisation partially ionised plasma
How Many Twists Do Solar Coronal Jets Release?
Different Signatures of Chromospheric Evaporation in Two Solar Flares Observed with IRIS
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University