E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Detection and Interpretation Of Long-Lived X-Ray Quasi-Periodic Pulsations in the X-Class Solar Flare On 2013 May 14 View all abstracts by submitter

Brian Dennis   Submitted: 2017-06-13 16:25

Quasi-periodic pulsations (QPP) seen in the time derivative of the GOES soft X-ray light curves are analyzed for the near-limb X3.2 event on 14 May 2013. The pulsations are apparent for a total of at least two hours from the impulsive phase to well into the decay phase, with a total of 163 distinct pulses evident to the naked eye. A wavelet analysis shows that the characteristic time scale of these pulsations increases systematically from ~25 s at 01:10 UT, the time of the GOES peak, to ~100 s at 02:00 UT. A second ridge in the wavelet power spectrum, most likely associated with flaring emission from a different active region, shows an increase from ~40 s at 01:40 UT to ~100 s at 03:10 UT. We assume that the QPP that produced the first ridge result from vertical kink-mode oscillations of the newly formed loops following magnetic reconnection in the coronal current sheet. This allows us to estimate the magnetic field strength as a function of altitude given the density, loop length, and QPP time scale as functions of time determined from the GOES light curves and RHESSI images. The calculated magnetic field strength of the newly formed loops ranges from about ~500 G at an altitude of 24 Mm to a low value of ~10 G at 60 Mm, in general agreement with the expected values at these altitudes. Fast sausage mode oscillations are also discussed and cannot be ruled out as an alternate mechanism for producing the QPP.

Authors: Brian R. Dennis, Anne K. Tolbert, Andrew Inglis, Jack Ireland, Tongjiang Wang, Gordon D. Holman, Laura A. Hayes, and Peter T. Gallagher
Projects: GOES X-rays,Hinode/XRT,RHESSI,SDO-AIA,SDO-EVE

Publication Status: Published in ApJ, 834:84, 2017
Last Modified: 2017-06-14 10:01
Go to main E-Print page  Small electron acceleration episodes in the solar corona  Witnessing a Large-scale Slipping Magnetic Reconnection along a Dimming Channel during a Solar Flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University