E-Print Archive

There are 4099 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Non-Maxwellian analysis of the transition-region line profiles observed by the Interface Region Imaging Spectrograph View all abstracts by submitter

Jaroslav Dud   Submitted: 2017-06-16 10:27

We investigate the nature of the spectral line profiles for transition region ions observed with the Interface Region Imaging Spectrograph (IRIS). In this context, we have analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The transition-region lines are found to exhibit significant wings in their spectral profiles, which can be well-fitted with non-Maxwellian kappa-distribution. The fit with a kappa-distribution can perform better than a double Gaussian fit, especially for the strongest line, Si IV 1402.8 A. Typical values of κ found are about 2, occurring in a majority of spatial pixels where the transition region lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si IV, O IV and S IV) appear to have the same FWHM irrespective of whether the line is an allowed or an intercombination transition. A similar value of kappa is obtained for the electron distribution by fitting of the line intensities relative to Si IV 1402.8 A, if photospheric abundances are assumed. The kappa-distributions however do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because for kappa-distributions the transition-region ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si IV line sufficiently enough for this line to become optically thin.

Authors: J. Dudík, V. Polito, E. Dzifčáková, G. Del Zanna, and P. Testa
Projects: IRIS

Publication Status: The Astrophysical Journal, in press
Last Modified: 2017-06-20 16:12
Go to main E-Print page  Electron plasma wake field acceleration in solar coronal and chromospheric plasmas  Non-Equilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review)  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University