E-Print Archive

There are 4100 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Double arc instability in the solar corona View all abstracts by submitter

Naoyuki Ishiguro   Submitted: 2017-06-21 02:36

The stability of the magnetic field in the solar corona is important for understanding the causes of solar eruptions. Although various scenarios have been suggested to date, the tether-cutting reconnection scenario proposed by Moore et al.(2001) is one of the widely accepted models to explain the onset process of solar eruptions. Although the tether-cutting reconnection scenario proposed that sigmoidal field formed by the internal reconnection is the magnetic field in pre-eruptive state, the stability of the sigmoidal field has not yet been investigated quantitatively. In this paper, in order to elucidate the stability problem of pre-eruptive state, we developed a simple numerical analysis, in which the sigmoidal field is modeled by a double arc electric current loop and its stability is analyzed. As a result, we found that the double arc loop is more easily destabilized than the axisymmetric torus, and it becomes unstable even if the external field does not decay with altitude, which is in contrast to the axisymmetric torus instability. This suggests that the tether-cutting reconnection may well work as the onset mechanism of solar eruptions, and if so the critical condition for eruption under certain geometry may be determined by a new type of instability rather than the torus instability. Based on them, we propose a new type of instability called double arc instability (DAI). We discuss the critical conditions for DAI and derive a new parameter kappa defined as the product of the magnetic twist and the normalized flux of tether-cutting reconnection.

Authors: N. Ishiguro, K. Kusano
Projects: None

Publication Status: accepted for publication in ApJ
Last Modified: 2017-06-21 11:27
Go to main E-Print page  Sunspot Light Walls Suppressed by Nearby Brightenings  Variation of Coronal Activity from the Minimum to Maximum of Solar Cycle 24 using Three Dimensional Coronal Electron Density Reconstructions from STEREO/COR1  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University