E-Print Archive

There are 3746 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Onset of a Large Ejective Solar Eruption from a Typical Coronal-Jet-Base Field Configuration View all abstracts by submitter

Navin Chandra Joshi   Submitted: 2017-07-04 22:04

Utilizing multiwavelength observations and magnetic field data from SDO/AIA, SDO/HMI, GOES and RHESSI, we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive three-ribbon flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two ribbons. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity-inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread part from that polarity-inversion line; this evolution is consistent with the tether-cutting-reconnection mechanism for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core under goes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (12 min) circular ribbon onset, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale (circular-ribbon diameter 100000 km) eruption is analogous to that of coronal jets (base size 10000 km), many of which, according to recent findings, result from eruptions of small-scale minifilaments. Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan-spine null-point magnetic topology happen on a wide range of size scales on the Sun.

Authors: Navin Chandra Joshi, Alphonse C. Sterling, Ronald L. Moore, Tetsuya Magara, Young-Jae Moon
Projects: GOES X-rays,RHESSI,SDO-AIA,SDO-HMI,SoHO-LASCO

Publication Status: Accepted for publication in ApJ Journal.
Last Modified: 2017-07-05 12:50
Go to main E-Print page  Quasi-Periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point  Heating of an erupting prominence associated with a solar coronal mass   ejection on 2012 January 27  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy release in the solar atmosphere from a stream of infalling prominence debris
Estimation of a Coronal Mass Ejection Magnetic Field Strength using Radio Observations of Gyrosynchrotron Radiation
QUASI-PERIODIC OSCILLATIONS IN FLARES AND CORONAL MASS EJECTIONS ASSOCIATED WITH MAGNETIC RECONNECTION
The 17 February 2013 sunquake in the context of the active region's magnetic field configuration
Optimal Energy Growth in Current Sheets
Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles
The Abundance of Helium in the Source Plasma of Solar Energetic Particles
Flare Ribbons Approach Observed by the IRIS and the SDO
Slippage of Jets Explained by the Magnetic Topology of NOAA Active Region 12035
Development and Parameters of a Non-Self-Similar CME Caused by Eruption of a Quiescent Prominence
Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties
Time variations of observed Hα line profiles and precipitation depths of non-thermal electrons in a solar flare
A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations
A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux
Observations of Reconnection Flows in a Flare on the Solar Disk
Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare
Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures
Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal
A statistical study of the inferred transverse density profile of coronal loop threads observed with SDO/AIA
Seismology of contracting and expanding coronal loops using damping of kink oscillations by mode coupling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University