E-Print Archive

There are 3813 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Quasi-Periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point View all abstracts by submitter

Pankaj Kumar   Submitted: 2017-07-05 13:05

This paper presents an observation of quasi-periodic rapidly-propagating waves observed in the AIA 171/193 Å channels during the impulsive phase of an M1.9 flare occurred on 7 May 2012. The instant period was found to decrease from 240 s to 120 s, the speed of the wave fronts was in the range of ~664-1416 km s-1. Almost simultaneously, quasi-periodic bursts with similar instant periods, ~70 s and ~140 s, occur in the microwave emission and in decimetric type IV, and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly-propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp-region above the flare arcade loops. For the first time, we provide the evidence of a tadpole wavelet signature at about 70-140 s in decimetric (245/610~MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with the periods of 95 s and 240 s propagating downward at the apparent speed of 172-273 km s-1. The nature of these downward propagating disturbances is not revealed, but they could be connected with magnetoacoustic waves or periodically shrinking loops.

Authors: Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2017-07-06 10:45
Go to main E-Print page  Three-dimensional oscillatory magnetic reconnection  Onset of a Large Ejective Solar Eruption from a Typical Coronal-Jet-Base   Field Configuration  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The density compression ratio of shock fronts associated with coronal mass ejections
Evolution of Photospheric Flow and Magnetic Fields Associated with The 2015 June 22 M6.5 Flare
Spatially inhomogeneous acceleration of electrons in solar flares
Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014
The origin, early evolution and predictability of solar eruptions
Polar Field Correction for HMI Line-of-Sight Synoptic Data
Relationship between Intensity of White-Light Flares and Proton Flux of Solar Energetic Particles
Spectroscopic Observations of a Current Sheet in a Solar Flare
IRIS Observations of Spicules and Structures Near the Solar Limb
Strong Transverse Photosphere Magnetic Fields and Twist in Light Bridge Dividing Delta Sunspot of Active Region 12673
Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare
Spectroscopic diagnostics of the non-Maxwellian κ-distributions using SDO/EVE observations of the 2012 March 7 X-class flare
Transient rotation of photospheric vector magnetic fields associated with a solar flare
Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares
A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures
Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model
Solar energetic particles and radio burst emission
A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope
Two-step solar filament eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University