E-Print Archive

There are 4099 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic Flux Cancelation as the Origin of Solar Quiet Region Pre-Jet Minifilaments View all abstracts by submitter

Navdeep Panesar   Submitted: 2017-07-05 17:01

We investigate the origin of ten solar quiet region pre-jet minifilaments, using EUV images from SDO/AIA and magnetograms from SDO/HMI. We recently found (Panesar et al. 2016b) that quiet region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancelation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancelation between minority-polarity and majority-polarity flux patches. In each of ten pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10-40% from before to after the minifilament appears. For our ten events, the minifilaments exist for periods ranging from 1.5 hr to two days before erupting to make a jet. Apparently, the flux cancelation builds highly sheared field that runs above and traces the neutral line, and the cool-transition-region-plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancelation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus our observations strongly support that quiet region magnetic flux cancelation results in both the formation of the pre-jet minifilament and its jet-driving eruption.

Authors: Navdeep K. Panesar, Alphonse C. Sterling, Ronald L. Moore
Projects: SDO-AIA

Publication Status: accepted for publication in ApJ
Last Modified: 2017-07-06 10:44
Go to main E-Print page  The eruption of a small-scale emerging flux rope as the driver of an M-class flare and a coronal mass ejection  Three-dimensional oscillatory magnetic reconnection  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University