E-Print Archive

There are 3897 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observational Study on the Fine Structure and Dynamics of a Solar Jet. I. Energy Build-Up Process around a Satellite Spot. View all abstracts by submitter

Takahito Sakaue   Submitted: 2017-07-09 13:09

We report a solar jet phenomenon associated with successive flares on November 10th 2014. These explosive events were involved with the satellite spots' emergence around a delta-type sunspot in the decaying active region NOAA 12205. The data of this jet was provided by Solar Dynamic Observatory (SDO), X-Ray Telescope (XRT) aboard Hinode, Interface Region Imaging Spectrograph (IRIS) and Domeless Solar Telescope (DST) at Hida Observatory, Kyoto University. These plentiful data enabled us to present this series of papers to discuss the entire processes of the observed phenomena including the energy storage, event trigger, and energy release. In this paper, we focus on the energy build-up and trigger phases, by analyzing the photospheric horizontal flow field around the active region with an optical flow method. The analysis reveals the following three. (i) The observed explosive phenomena involved three satellite spots, the magnetic fluxes of which successively reconnected with their pre-existing ambient fields. (ii) All of these satellite spots emerged in the moat region of a pivotal delta-type sunspot, especially near its convergent boundary with the neighboring supergranules or moat regions of adjacent sunspots. (iii) Around the jet ejection site, the positive polarities of satellite spot and adjacent emerging flux encountered the global magnetic field with negative polarity in the moat region of the pivotal delta-type sunspot, and thus the polarity inversion line was formed along the convergent boundary of the photospheric horizontal flow channels.

Authors: Takahito SAKAUE, Akiko TEI, Ayumi ASAI, Satoru UENO, Kiyoshi ICHIMOTO, Kazunari SHIBATA
Projects: None

Publication Status: accepted for publication in PASJ
Last Modified: 2017-07-11 11:22
Go to main E-Print page  Magnetic Flux Rope Shredding by a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions  Coronal Holes and Open Magnetic Flux over Cycles 23 and 24  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Computation of Relative Magnetic Helicity in Spherical Coordinates
Some characteristics of the GLE on 10 September 2017
Quasi-periodic Pulsations in a Solar Microflare
Homologous large-amplitude Nonlinear fast-mode Magnetosonic Waves Driven by Recurrent Coronal Jets
EUV Waves Driven by Sudden Expansion of Transequatorial Loops Caused by Solar Coronal Jets
Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts
Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes?
Does Nearby Open Flux Affect the Eruptivity of Solar Active Regions?
Cyclic Changes of the Sun's Seismic Radius
Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017
Solar Cycle Variations of Rotation and Asphericity in the Near-Surface Shear Layer
Solar coronal loop dynamics near the null point above active region NOAA 2666
Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations
The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave
Indirect solar wind measurements using archival cometary tail observations
Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun
Always a Farm Boy
Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University