E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic Flux Rope Shredding by a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions View all abstracts by submitter

Georgios Chintzoglou   Submitted: 2017-07-11 12:59

We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the VAULT2.0 sounding rocket launch. The refurbished Very high Angular resolution Ultraviolet Telescope (VAULT2.0) is a Lyα (λ 1216 Å) spectroheliograph launched on September 30, 2014. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No Coronal Mass Ejection (CME) was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion which enables us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope-like (MFR) structure was destroyed during its interaction with the ambient magnetic field creating downflows of cool plasma and diffuse hot coronal structures reminiscent of "cusps". We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.

Authors: Georgios Chintzoglou, Angelos Vourlidas, Antonia Savcheva, Svetlin Tassev, Samuel Tun Beltran, Guillermo Stenborg
Projects: GOES X-rays,Hinode/SOT,IRIS,SDO-AIA,SDO-HMI,SoHO-LASCO,Very high-Angular resolution Ultraviolet Telescope 2.0 (VAULT2)

Publication Status: Published in the Astrophysical Journal, Vol 843, p. 93
Last Modified: 2017-07-12 11:41
Go to main E-Print page  Spatial Offsets in Flare-CME Current Sheets  Observational Study on the Fine Structure and Dynamics of a Solar Jet. I. Energy Build-Up Process around a Satellite Spot.  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University