E-Print Archive

There are 3746 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Spatial Offsets in Flare-CME Current Sheets View all abstracts by submitter

John Raymond   Submitted: 2017-07-12 12:06

Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV and X-ray observations have been identified as current sheets and interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe XVIII] and Si XII lines. In this paper we discuss several surprising cases in which the [Fe XVIII] and Si XII emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.

Authors: Raymond, J.C., Giordano, S., Ciaravella, A.
Projects: None

Publication Status: ApJ, in press
Last Modified: 2017-07-14 08:40
Go to main E-Print page  Solar plasma radio emission in the presence of imbalanced turbulence of kinetic-scale Alfven waves  Magnetic Flux Rope Shredding by a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy release in the solar atmosphere from a stream of infalling prominence debris
Estimation of a Coronal Mass Ejection Magnetic Field Strength using Radio Observations of Gyrosynchrotron Radiation
QUASI-PERIODIC OSCILLATIONS IN FLARES AND CORONAL MASS EJECTIONS ASSOCIATED WITH MAGNETIC RECONNECTION
The 17 February 2013 sunquake in the context of the active region's magnetic field configuration
Optimal Energy Growth in Current Sheets
Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles
The Abundance of Helium in the Source Plasma of Solar Energetic Particles
Flare Ribbons Approach Observed by the IRIS and the SDO
Slippage of Jets Explained by the Magnetic Topology of NOAA Active Region 12035
Development and Parameters of a Non-Self-Similar CME Caused by Eruption of a Quiescent Prominence
Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties
Time variations of observed Hα line profiles and precipitation depths of non-thermal electrons in a solar flare
A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations
A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux
Observations of Reconnection Flows in a Flare on the Solar Disk
Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare
Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures
Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal
A statistical study of the inferred transverse density profile of coronal loop threads observed with SDO/AIA
Seismology of contracting and expanding coronal loops using damping of kink oscillations by mode coupling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University