E-Print Archive

There are 3746 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Successive Two-sided loop Jets Caused by Magnetic Reconnection between Two adjacent Filamentary Threads View all abstracts by submitter

Yuandeng Shen   Submitted: 2017-07-16 18:18

We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope (NVST) and the space-borne Solar Dynamics Observatory ( SDO). The two successive two-sided loop jets manifested similar evolution process and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging and cancellation processes at the jet's source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached to each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading to opposite directions along the paths of the two filamentary threads, and with a typical speed of two-sided loop jets of the order 150 km s-1. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by the magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.

Authors: Zhanjun Tian, Yu Liu, Yuandeng Shen, Abouazza Elmhamdi, Jiangtao Su, Ying D. Liu, and Ayman. S. Kordi
Projects: SDO-AIA

Publication Status: accepted by APJ
Last Modified: 2017-07-17 10:17
Go to main E-Print page  Microflare Heating of a Solar Active Region Observed with NuSTAR, Hinode/XRT, and SDO/AIA  Solar plasma radio emission in the presence of imbalanced turbulence of kinetic-scale Alfven waves  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy release in the solar atmosphere from a stream of infalling prominence debris
Estimation of a Coronal Mass Ejection Magnetic Field Strength using Radio Observations of Gyrosynchrotron Radiation
QUASI-PERIODIC OSCILLATIONS IN FLARES AND CORONAL MASS EJECTIONS ASSOCIATED WITH MAGNETIC RECONNECTION
The 17 February 2013 sunquake in the context of the active region's magnetic field configuration
Optimal Energy Growth in Current Sheets
Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles
The Abundance of Helium in the Source Plasma of Solar Energetic Particles
Flare Ribbons Approach Observed by the IRIS and the SDO
Slippage of Jets Explained by the Magnetic Topology of NOAA Active Region 12035
Development and Parameters of a Non-Self-Similar CME Caused by Eruption of a Quiescent Prominence
Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties
Time variations of observed Hα line profiles and precipitation depths of non-thermal electrons in a solar flare
A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations
A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux
Observations of Reconnection Flows in a Flare on the Solar Disk
Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare
Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures
Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal
A statistical study of the inferred transverse density profile of coronal loop threads observed with SDO/AIA
Seismology of contracting and expanding coronal loops using damping of kink oscillations by mode coupling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University