E-Print Archive

There are 3914 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Electron acceleration and small‐scale coherent structure formation by an Alfvén wave propagating in coronal interplume region View all abstracts by submitter

Khalil Daiffallah   Submitted: 2017-07-28 16:54

We use the 2.5-D electromagnetic particle-in-cell simulation code to investigate the acceleration of electrons in solar coronal holes through the interaction of Alfvén waves with an interplume region. The interplume is modeled by cavity density gradients that are perpendicular to the background magnetic field. The aim is to help explain the observation of suprathermal electrons under a relatively quiet Sun. Simulations show that Alfvén waves interacting with the interplume region give rise to a strong local electric field that accelerates electrons in the direction parallel to the background magnetic field. Suprathermal electron beams and small-scale coherent structures are observed within interplume of strong density gradients. These features result from the nonlinear evolution of the electron beam plasma instability.

Authors: K.Daiffallah, F.Mottez
Projects: None

Publication Status: Published
Last Modified: 2017-07-31 11:04
Go to main E-Print page  The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications  2010 August 1-2 sympathetic eruptions: II. Magnetic topology of the MHD background field  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions
Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
A Model of Zebra Patterns in Solar Radio Emission
Three-dimensional magnetic reconnection in a collapsing coronal loop system
On the Synthesis of GOES Light Curves from Numerical Models
Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares
2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using Fourier filtering
Non-damping oscillations at flaring loops
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory
Computation of Relative Magnetic Helicity in Spherical Coordinates

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University