E-Print Archive

There are 3872 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The scalings of the coronal plasma parameters with the mean photospheric magnetic field: The long-term evolution of AR 7978 View all abstracts by submitter

Pascal Demoulin   Submitted: 2002-12-05 08:20

We analyze the evolution of the fluxes observed in X-rays and correlate them with the magnetic flux density in active region NOAA 7978 from its birth throughout its decay, for five solar rotations. We use SoHO/MDI data to derive magnetic observables, together with Yohkoh/SXT and Yohkoh/BCS data to determine the global evolution of the temperature and the emission measure of the coronal plasma at times when no significant brightenings were observed. We show that the mean X-ray flux and derived parameters, temperature and emission measure (together with other quantities deduced from them, such as the density and the pressure), of the plasma in the AR follow power-law relationships with the mean magnetic flux density (ar{B}). The exponents (b) of these power-law functions (a ar{B}b) are derived using two different statistical methods, a classical least-squares method in log-log plots and a non-parametric method, which takes into account the fact that errors in the data may not be normally distributed. Both methods give similar exponents, within error bars, for the mean temperature and for both instruments (SXT and BCS); in particular, b stays in the range [0.27,0.31] and [0.24,0.55] for full resolution SXT images and BCS data, respectively. For the emission measure the exponent b lies in the range [0.85,1.35] and [0.45,1.96] for SXT and BCS, respectively. The determination of such power-law relations, when combined with the results from coronal heating models, can provide us with powerful tools for determining the mechanism responsible for the existence of the high temperature corona.

Authors: van Driel-Gesztelyi L., Demoulin, P., Mandrini C.H., Harra, L., Klimchuk, J.A.
Projects:

Publication Status: ApJ, preprint, in press
Last Modified: 2002-12-05 08:20
Go to main E-Print page  Astrophysics 2002 (Section 2: Solar Physics)  Testing coronal heating models: The long-term evolution of AR 7978  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Two Episodes of Magnetic Reconnections During a Confined Circular-ribbon Flare
Enhanced stellar activity for slow antisolar differential rotation?
Quasi-periodic pulsations in the most powerful solar flare of Cycle 24
GONG Catalog of Solar Filament Oscillations Near Solar Maximum
Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005
Unambiguous Evidence of Coronal Implosions During Solar Eruptions and Flares
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Oscillations of cometary tails: a vortex shedding phenomenon?
Observations of Running Penumbral Waves Emerging in a Sunspot
Reconnection in the Post-Impulsive Phase of Solar Flares
Temperature of source regions of 3He-rich impulsive solar energetic particles events
3He-rich Solar Energetic Particles in Helical Jets on the Sun
On the importance of the nonequilibrium ionization of Si IV and O IV and the line-of-sight in solar surges
Was the cosmic ray burst detected by the GRAPES-3 on 22 June 2015 caused by transient weakening of geomagnetic field or by an interplanetary anisotropy?
Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects
Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope
Fermi-LAT observations of the 2017 September 10th solar flare
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University