E-Print Archive

There are 3778 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Direct Observation of Two-step Magnetic Reconnection in a Solar Flare View all abstracts by submitter

Tingyu Gou   Submitted: 2017-08-11 07:13

We report observations of an eruptive X2.8 flare on 2013 May 13, which shows two distinct episodes of energy release in the impulsive phase. The first episode is characterized by the eruption of a magnetic flux rope, similar to the energy-release process in most standard eruptive flares. The second episode, which is stronger than the first normal one and shows enhanced high-energy X-ray and even γ-ray emissions, is closely associated with magnetic reconnection of a large-scale loop in the aftermath of the eruption. The reconnection inflow of the loop leg is observed in the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 304 Å passband and accelerates toward the reconnection region to speeds as high as ∼130 km s-1. Simultaneously, the corresponding outflow jets are observed in the AIA hot passbands with speeds of ∼740 km s-1 and a mean temperature of ∼14 MK. RHESSI observations show a strong burst of hard X-ray (HXR) and γ-ray emissions with hard electron spectra of δ ≈ 3, exhibiting a soft"hard"harder behavior. A distinct altitude decrease of the HXR loop-top source coincides with the inward swing of the loop leg observed in the AIA 304 Å passband, which is suggested to be related to the coronal implosion. This fast inflow of magnetic flux contained in the loop leg greatly enhances the reconnection rate and results in very efficient particle acceleration in the second-step reconnection, which also helps to achieve a second higher temperature peak up to T ≈ 30 MK.

Authors: Tingyu Gou, Astrid M. Veronig, Ewan C. Dickson, Aaron Hernandez-Perez, Rui Liu
Projects: RHESSI,SDO-AIA

Publication Status: ApJL, 845: L1 (2017)
Last Modified: 2017-08-15 17:09
Go to main E-Print page  Electric-Current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions  Order out of Chaos : Self-Organization Processes in Astrophysics  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar-wind predictions for the Parker Solar Probe orbit
Simulating coronal loop implosion and compressible wave modes in a flare hit active region
Development of Solar Flares and Features of the Fine Structure of Solar Radio Emission
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
Imaging Spectroscopy of Solar Radio Burst Fine Structures
On a small-scale EUV wave: the driving mechanism and the associated oscillating filament
Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer
On a solar blowout jet: driven mechanism and the formation of cool and hot components
Understanding the Role of Mass-Unloading in Filament Eruptions
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves
Characteristics of Sustained >100 γ-ray Emission Associated with Solar Flares
Characteristics that Produce White-Light Enhancements in Solar Flares Observed by Hinode/SOT
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube
High-wavenumber solar f-mode strengthening prior to active region formation
Block-induced complex structures building the flare-productive solar active region 12673

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University