E-Print Archive

There are 3746 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Direct Observation of Two-step Magnetic Reconnection in a Solar Flare View all abstracts by submitter

Tingyu Gou   Submitted: 2017-08-11 07:13

We report observations of an eruptive X2.8 flare on 2013 May 13, which shows two distinct episodes of energy release in the impulsive phase. The first episode is characterized by the eruption of a magnetic flux rope, similar to the energy-release process in most standard eruptive flares. The second episode, which is stronger than the first normal one and shows enhanced high-energy X-ray and even γ-ray emissions, is closely associated with magnetic reconnection of a large-scale loop in the aftermath of the eruption. The reconnection inflow of the loop leg is observed in the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 304 Å passband and accelerates toward the reconnection region to speeds as high as ∼130 km s-1. Simultaneously, the corresponding outflow jets are observed in the AIA hot passbands with speeds of ∼740 km s-1 and a mean temperature of ∼14 MK. RHESSI observations show a strong burst of hard X-ray (HXR) and γ-ray emissions with hard electron spectra of δ ≈ 3, exhibiting a soft"hard"harder behavior. A distinct altitude decrease of the HXR loop-top source coincides with the inward swing of the loop leg observed in the AIA 304 Å passband, which is suggested to be related to the coronal implosion. This fast inflow of magnetic flux contained in the loop leg greatly enhances the reconnection rate and results in very efficient particle acceleration in the second-step reconnection, which also helps to achieve a second higher temperature peak up to T ≈ 30 MK.

Authors: Tingyu Gou, Astrid M. Veronig, Ewan C. Dickson, Aaron Hernandez-Perez, Rui Liu
Projects: RHESSI,SDO-AIA

Publication Status: ApJL, 845: L1 (2017)
Last Modified: 2017-08-15 17:09
Go to main E-Print page  Electric-Current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions  Order out of Chaos : Self-Organization Processes in Astrophysics  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy release in the solar atmosphere from a stream of infalling prominence debris
Estimation of a Coronal Mass Ejection Magnetic Field Strength using Radio Observations of Gyrosynchrotron Radiation
QUASI-PERIODIC OSCILLATIONS IN FLARES AND CORONAL MASS EJECTIONS ASSOCIATED WITH MAGNETIC RECONNECTION
The 17 February 2013 sunquake in the context of the active region's magnetic field configuration
Optimal Energy Growth in Current Sheets
Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles
The Abundance of Helium in the Source Plasma of Solar Energetic Particles
Flare Ribbons Approach Observed by the IRIS and the SDO
Slippage of Jets Explained by the Magnetic Topology of NOAA Active Region 12035
Development and Parameters of a Non-Self-Similar CME Caused by Eruption of a Quiescent Prominence
Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties
Time variations of observed Hα line profiles and precipitation depths of non-thermal electrons in a solar flare
A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations
A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux
Observations of Reconnection Flows in a Flare on the Solar Disk
Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare
Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures
Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal
A statistical study of the inferred transverse density profile of coronal loop threads observed with SDO/AIA
Seismology of contracting and expanding coronal loops using damping of kink oscillations by mode coupling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University