E-Print Archive

There are 3746 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Electric-Current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions View all abstracts by submitter

Yang Liu   Submitted: 2017-08-14 18:43

The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs; two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL-shear between these two groups is much less pronounced, which suggests that the degree of current-neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.

Authors: Yang Liu, Xudong Sun, Tibor Török, Viacheslav S. Titov, James E. Leake
Projects: SDO-HMI

Publication Status: ApJL accepted
Last Modified: 2017-08-15 17:09
Go to main E-Print page  Solar hard X-ray imaging by means of Compressed Sensing and Finite Isotropic Wavelet Transform  Direct Observation of Two-step Magnetic Reconnection in a Solar Flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy release in the solar atmosphere from a stream of infalling prominence debris
Estimation of a Coronal Mass Ejection Magnetic Field Strength using Radio Observations of Gyrosynchrotron Radiation
QUASI-PERIODIC OSCILLATIONS IN FLARES AND CORONAL MASS EJECTIONS ASSOCIATED WITH MAGNETIC RECONNECTION
The 17 February 2013 sunquake in the context of the active region's magnetic field configuration
Optimal Energy Growth in Current Sheets
Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles
The Abundance of Helium in the Source Plasma of Solar Energetic Particles
Flare Ribbons Approach Observed by the IRIS and the SDO
Slippage of Jets Explained by the Magnetic Topology of NOAA Active Region 12035
Development and Parameters of a Non-Self-Similar CME Caused by Eruption of a Quiescent Prominence
Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties
Time variations of observed Hα line profiles and precipitation depths of non-thermal electrons in a solar flare
A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations
A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux
Observations of Reconnection Flows in a Flare on the Solar Disk
Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare
Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures
Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal
A statistical study of the inferred transverse density profile of coronal loop threads observed with SDO/AIA
Seismology of contracting and expanding coronal loops using damping of kink oscillations by mode coupling

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University