E-Print Archive

There are 3835 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Electric-Current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions View all abstracts by submitter

Yang Liu   Submitted: 2017-08-14 18:43

The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs; two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL-shear between these two groups is much less pronounced, which suggests that the degree of current-neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.

Authors: Yang Liu, Xudong Sun, Tibor Török, Viacheslav S. Titov, James E. Leake
Projects: SDO-HMI

Publication Status: ApJL accepted
Last Modified: 2017-08-15 17:09
Go to main E-Print page  Solar hard X-ray imaging by means of Compressed Sensing and Finite Isotropic Wavelet Transform  Direct Observation of Two-step Magnetic Reconnection in a Solar Flare  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares
Unambiguous Evidence of Filament Splitting-Induced Partial Eruptions
On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone
Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnotics
Plasma evolution within an erupting coronal cavity
Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event
Flux Rope Breaking and Formation of a Rotating Blowout Jet
On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory
Two-Phase Heating in Flaring Loops
Evidence For The Magnetic Breakout Model in an Equatorial Coronal-Hole Jet
Spontaneous flux concentrations from the negative effective magnetic pressure instability beneath a radiative stellar surface
Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth
Evaluation of Applicability of a Flare Trigger Model based on Comparison of Geometric Structures
Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model
Formation and Dynamics of a Solar Eruptive Flux Tube
The Instruments and Capabilities of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats
Fine Structures of Solar Radio Type III Bursts and their Possible Relationship with Coronal Density Turbulence
Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS
Observations of Electron-driven Evaporation during a Flare Precursor

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University