E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating View all abstracts by submitter

Ignacio Ugarte-Urra   Submitted: 2017-08-16 13:04

We present new measurements of the dependence of the Extreme Ultraviolet radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO). Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance - magnetic flux power-law relationship (I∝Φ α ) to the AIA 335 Å passband, and the Fe XVIII 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation (Φ/D) is a better indicator of radiance for the Fe XVIII line with a slope of α =3.22±0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport (AFT) model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops (EBTEL) model with steady heating scaled as the ratio of the average field strength and the length (B/L) and render the Fe XVIII and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance - magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology and heating can yield realistic estimates for the decay of active region radiances with time.

Authors: Ignacio Ugarte-Urra, Harry P. Warren, Lisa A. Upton, Peter R. Young

Publication Status: ApJ (in press)
Last Modified: 2017-08-23 12:50
Go to main E-Print page  Comparing UV/EUV line parameters and magnetic field in a quiescent prominence with tornadoes  Solar hard X-ray imaging by means of Compressed Sensing and Finite Isotropic Wavelet Transform  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides
Blue wing enhancement of the chromospheric Mg II h and k lines in a solar flare
Finite amplitude transverse oscillations of a magnetic rope
Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and its Heating Evolution with VAULT2.0 and IRIS Observations
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
Implosive collapse about magnetic null points: A quantitative comparison between 2D and 3D nulls
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Strong non-radial propagation of energetic electrons in solar corona
Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory
LOFAR observations of the quiet solar corona
Statistics of "Cold" Early Impulsive Solar Flares in X-ray and Microwave domains
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673
An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
On the detection of coronal dimmings and the extraction of their characteristic properties
Plasma diagnostics of coronal dimming events
Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating
Observationally quantified reconnection providing a viable mechanism for active region coronal heating

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University