E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A statistical study of the inferred transverse density profile of coronal loop threads observed with SDO/AIA View all abstracts by submitter

Christopher Goddard   Submitted: 2017-08-24 03:16

Aims. We carry out a statistical study of the inferred coronal loop cross-sectional density profiles using extreme ultraviolet (EUV) imaging data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). Methods. We analysed 233 coronal loops observed during 2015/2016. We consider three models for the density profile; the step function (model S ), the linear transition region profile (model L), and a Gaussian profile (model G). Bayesian inference is used to compare the three corresponding forward modelled intensity profiles for each loop. These are constructed by integrating the square of the density from a cylindrical loop cross section along the line of sight, assuming an isothermal cross section, and applying the instrumental point spread function. Results. Calculating the Bayes factors for comparisons between the models, it was found that in 47 % of cases there is very strong evidence for model L over model S and in 45 % of cases very strong evidence for model G over S . Using multiple permutations of the Bayes factor the favoured density profile for each loop was determined for multiple evidence thresholds. There were a similar number of cases where model L or G are favoured, showing evidence for inhomogeneous layers and constantly varying density cross sections, subject to our assumptions and simplifications. Conclusions. For sufficiently well resolved loop threads with no visible substructure it has been shown that using Bayesian inference and the observed intensity profile we can distinguish between the proposed density profiles at a given AIA wavelength and spatial resolution. We have found very strong evidence for inhomogeneous layers, with model L being the most general, and a tendency towards thicker or even continuous layers.

Authors: C. R. Goddard , D. J. Pascoe , S. Anfinogentov, and V. M. Nakariakov
Projects: None

Publication Status: In press
Last Modified: 2017-08-25 10:16
Go to main E-Print page  Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal  Seismology of contracting and expanding coronal loops using damping of kink oscillations by mode coupling  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University