E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Time variations of observed Hα line profiles and precipitation depths of non-thermal electrons in a solar flare View all abstracts by submitter

Robert Falewicz   Submitted: 2017-09-01 03:20

We compare time variations of the Hα and X-ray emissions observed during the pre-impulsive and impulsive phases of the C1.1-class solar flare on 21 June 2013 with those of plasma parameters and synthesized X-ray emission from a one-dimensional hydro-dynamic numerical model of the flare. The numerical model was calculated assuming that the external energy is delivered to the flaring loop by non-thermal electrons. The Hα spectra and images were obtained using the Multi-channel Subtractive Double Pass spectrograph with a time resolution of 50~ms. The X-ray fluxes and spectra were recorded by the Reuven Ramaty High-Energy Solar Spectroscopic Imager ( RHESSI). Pre-flare geometric and thermodynamic parameters of the model and the delivered energy were estimated using RHESSI data. The time variations of the X-ray light curves in various energy bands and the those of the Hα intensities and line profiles were well correlated. The time scales of the observed variations agree with the calculated variations of the plasma parameters in the flaring loop footpoints, reflecting the time variations of the vertical extent of the energy deposition layer. Our result shows that the fast time variations of the Hα emission of the flaring kernels can be explained by momentary changes of the deposited energy flux and the variations of the penetration depths of the non-thermal electrons.

Authors: R. Falewicz, K. Radziszewski, P. Rudawy, A. Berlicki
Projects: None

Publication Status: accepted to ApJ
Last Modified: 2017-09-01 11:13
Go to main E-Print page  Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties  A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides
Blue wing enhancement of the chromospheric Mg II h and k lines in a solar flare
Finite amplitude transverse oscillations of a magnetic rope
Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and its Heating Evolution with VAULT2.0 and IRIS Observations
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
Implosive collapse about magnetic null points: A quantitative comparison between 2D and 3D nulls
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Strong non-radial propagation of energetic electrons in solar corona
Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory
LOFAR observations of the quiet solar corona
Statistics of "Cold" Early Impulsive Solar Flares in X-ray and Microwave domains
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673
An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
On the detection of coronal dimmings and the extraction of their characteristic properties
Plasma diagnostics of coronal dimming events
Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating
Observationally quantified reconnection providing a viable mechanism for active region coronal heating

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University