E-Print Archive

There are 3914 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Slippage of Jets Explained by the Magnetic Topology of NOAA Active Region 12035 View all abstracts by submitter

Reetika Joshi   Submitted: 2017-09-10 21:01

In this study, we present the investigation of eleven recurring solar jets originated from two different sites (site 1 and site 2) close to each other (~ 11 Mm) in the NOAA active region (AR) 12035 during 15-16 April 2014. The jets were observed by the Atmospheric Imaging Assembly (AIA) telescope onboard the Solar Dynamics Observatory (SDO) satellite. Two jets were observed by the Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India telescope in Hα . On 15 April flux emergence is important in site 1 while on 16 April flux emergence and cancellation mechanisms are involved in both sites. The jets of both sites have parallel trajectories and move to the south with a speed between 100 and 360 km s-1. We observed some connection between the two sites with some transfer of brightening. The jets of site 2 occurred during the second day and have a tendency to move towards the jets of site 1 and merge with them. We conjecture that the slippage of the jets could be explained by the complex topology of the region with the presence of a few low-altitude null points and many quasi-separatrix layers (QSLs), which could intersect with one another.

Authors: R. Joshi, B. Schmieder, R. Chandra, G. Aulanier, F.P. Zuccarello, W. Uddin
Projects: None

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2017-09-13 12:22
Go to main E-Print page  Flare Ribbons Approach Observed by the IRIS and the SDO  Development and Parameters of a Non-Self-Similar CME Caused by Eruption of a Quiescent Prominence  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions
Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
A Model of Zebra Patterns in Solar Radio Emission
Three-dimensional magnetic reconnection in a collapsing coronal loop system
On the Synthesis of GOES Light Curves from Numerical Models
Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares
2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using Fourier filtering
Non-damping oscillations at flaring loops
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory
Computation of Relative Magnetic Helicity in Spherical Coordinates

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University