E-Print Archive

There are 3872 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Abundance of Helium in the Source Plasma of Solar Energetic Particles View all abstracts by submitter

Donald V Reames   Submitted: 2017-09-13 14:39

Studies of patterns of abundance enhancements of elements, relative to solar-coronal abundances, in large solar energetic-particle (SEP) events, and of their power-law dependence on the mass-to-charge ratio A/Q of the ions, have been used to determine the effective source-plasma temperature T that defines the Q-values of the ions. We find that a single assumed value for the coronal reference He/O ratio in all SEP events is often inconsistent with the transport-induced power-law trend of the other elements. In fact, the coronal He/O actually varies rather widely from one SEP event to another. In the large Fe-rich SEP events with T = 3 MK, where shock waves, driven out by coronal mass ejections (CMEs), have reaccelerated residual ions from impulsive suprathermal events that occur earlier in solar active regions, He/O ~ 90, a ratio similar to that in the slow solar wind, which may also originate from active regions. Ions in the large SEP events with T < 2 MK may be accelerated outside active regions, and have values of 40 < He/O < 60. Mechanisms that determine coronal abundances, including variations of He/O, are likely to occur near the base of the corona (at ~ 1.1 RS) and thus to affect both SEPs (at ~2 - 3 RS) and the solar wind. Other than He, reference coronal abundances for heavier elements show little temperature dependence or systematic difference between SEP events; He, the element with the highest first ionization potential, is unique. The CME-driven shock waves probe the same regions of space, at ~2 RS near active regions, which are also likely sources of the slow solar wind, providing complementary information on conditions in those regions.

Authors: Donald V. Reames
Projects: Wind

Publication Status: accepted for Solar Physics
Last Modified: 2017-09-15 10:14
Go to main E-Print page  Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles  Flare Ribbons Approach Observed by the IRIS and the SDO  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Two Episodes of Magnetic Reconnections During a Confined Circular-ribbon Flare
Enhanced stellar activity for slow antisolar differential rotation?
Quasi-periodic pulsations in the most powerful solar flare of Cycle 24
GONG Catalog of Solar Filament Oscillations Near Solar Maximum
Chromospheric response during the precursor and the main phase of a B6.4 flare on August 20, 2005
Unambiguous Evidence of Coronal Implosions During Solar Eruptions and Flares
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
Oscillations of cometary tails: a vortex shedding phenomenon?
Observations of Running Penumbral Waves Emerging in a Sunspot
Reconnection in the Post-Impulsive Phase of Solar Flares
Temperature of source regions of 3He-rich impulsive solar energetic particles events
3He-rich Solar Energetic Particles in Helical Jets on the Sun
On the importance of the nonequilibrium ionization of Si IV and O IV and the line-of-sight in solar surges
Was the cosmic ray burst detected by the GRAPES-3 on 22 June 2015 caused by transient weakening of geomagnetic field or by an interplanetary anisotropy?
Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects
Studies of Isolated and Non-isolated Photospheric Bright Points in an Active Region Observed by the New Vacuum Solar Telescope
Fermi-LAT observations of the 2017 September 10th solar flare
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University