E-Print Archive

There are 3813 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Abundance of Helium in the Source Plasma of Solar Energetic Particles View all abstracts by submitter

Donald V Reames   Submitted: 2017-09-13 14:39

Studies of patterns of abundance enhancements of elements, relative to solar-coronal abundances, in large solar energetic-particle (SEP) events, and of their power-law dependence on the mass-to-charge ratio A/Q of the ions, have been used to determine the effective source-plasma temperature T that defines the Q-values of the ions. We find that a single assumed value for the coronal reference He/O ratio in all SEP events is often inconsistent with the transport-induced power-law trend of the other elements. In fact, the coronal He/O actually varies rather widely from one SEP event to another. In the large Fe-rich SEP events with T = 3 MK, where shock waves, driven out by coronal mass ejections (CMEs), have reaccelerated residual ions from impulsive suprathermal events that occur earlier in solar active regions, He/O ~ 90, a ratio similar to that in the slow solar wind, which may also originate from active regions. Ions in the large SEP events with T < 2 MK may be accelerated outside active regions, and have values of 40 < He/O < 60. Mechanisms that determine coronal abundances, including variations of He/O, are likely to occur near the base of the corona (at ~ 1.1 RS) and thus to affect both SEPs (at ~2 - 3 RS) and the solar wind. Other than He, reference coronal abundances for heavier elements show little temperature dependence or systematic difference between SEP events; He, the element with the highest first ionization potential, is unique. The CME-driven shock waves probe the same regions of space, at ~2 RS near active regions, which are also likely sources of the slow solar wind, providing complementary information on conditions in those regions.

Authors: Donald V. Reames
Projects: Wind

Publication Status: accepted for Solar Physics
Last Modified: 2017-09-15 10:14
Go to main E-Print page  Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles  Flare Ribbons Approach Observed by the IRIS and the SDO  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The density compression ratio of shock fronts associated with coronal mass ejections
Evolution of Photospheric Flow and Magnetic Fields Associated with The 2015 June 22 M6.5 Flare
Spatially inhomogeneous acceleration of electrons in solar flares
Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014
The origin, early evolution and predictability of solar eruptions
Polar Field Correction for HMI Line-of-Sight Synoptic Data
Relationship between Intensity of White-Light Flares and Proton Flux of Solar Energetic Particles
Spectroscopic Observations of a Current Sheet in a Solar Flare
IRIS Observations of Spicules and Structures Near the Solar Limb
Strong Transverse Photosphere Magnetic Fields and Twist in Light Bridge Dividing Delta Sunspot of Active Region 12673
Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare
Spectroscopic diagnostics of the non-Maxwellian κ-distributions using SDO/EVE observations of the 2012 March 7 X-class flare
Transient rotation of photospheric vector magnetic fields associated with a solar flare
Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares
A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures
Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model
Solar energetic particles and radio burst emission
A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope
Two-step solar filament eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University