E-Print Archive

There are 3758 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Comparison of Helioseismic Far-side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity View all abstracts by submitter

Jiong Qiu   Submitted: 2017-09-25 11:30

Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observation of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether or not new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that, while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a farside region.

Authors: P. C. Liewer, J. Qiu, C. Lindsey
Projects: None

Publication Status: accepted in Solar Physics
Last Modified: 2017-09-26 13:44
Go to main E-Print page  A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations  Observations of a Radio-quiet Solar Preflare  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops
A Magnetic Bald-Patch Flare in Solar Active Region 11117
Reply to comment by Usoskin (2017) on the paper
Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams
Pulsations in the Earth's Lower Ionosphere Synchronized with Solar Flare Emission
Oscillations Excited by Plasmoids Formed During Magnetic Reconnection in a Vertical Gravitationally Stratified Current Sheet
Doppler shift oscillations from a hot line observed by IRIS
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
Detection of 3-Minute Oscillations in Full-disk Lya Emission During A Solar Flare
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
Comparison of Helioseismic Far-side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity
Observations of a Radio-quiet Solar Preflare
Energy release in the solar atmosphere from a stream of infalling prominence debris
Estimation of a Coronal Mass Ejection Magnetic Field Strength using Radio Observations of Gyrosynchrotron Radiation
The 17 February 2013 sunquake in the context of the active region's magnetic field configuration
Optimal Energy Growth in Current Sheets
Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles
The Abundance of Helium in the Source Plasma of Solar Energetic Particles

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University