E-Print Archive

There are 3775 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops View all abstracts by submitter

Chaowei Jiang   Submitted: 2017-10-10 19:30

Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field which is difficult to directly measure. Various analytic models and numerical codes exist but their results often drastically differ. Thus a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a non-linear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field which matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ~10 degree. This suggests that the CESE-MHD-NLFFF code, even without using the information of coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential-field give comparable results of mean misalignment angle (~30 degree). Thus further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

Authors: Aiying Duan, Chaowei Jiang, Qiang Hu, Huai Zhang, G. Allen Gary, S. T. Wu, Jinbin Cao
Projects: SDO-AIA,SDO-HMI

Publication Status: published in ApJ
Last Modified: 2017-10-11 06:20
Go to main E-Print page  Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare  A Magnetic Bald-Patch Flare in Solar Active Region 11117  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
Imaging Spectroscopy of Solar Radio Burst Fine Structures
On a small-scale EUV wave: the driving mechanism and the associated oscillating filament
Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer
On a solar blowout jet: driven mechanism and the formation of cool and hot components
Understanding the Role of Mass-Unloading in Filament Eruptions
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves
Characteristics of Sustained >100 γ-ray Emission Associated with Solar Flares
Characteristics that Produce White-Light Enhancements in Solar Flares Observed by Hinode/SOT
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube
High-wavenumber solar f-mode strengthening prior to active region formation
Block-induced complex structures building the flare-productive solar active region 12673
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops
A Magnetic Bald-Patch Flare in Solar Active Region 11117

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University