E-Print Archive

There are 3950 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops View all abstracts by submitter

Chaowei Jiang   Submitted: 2017-10-10 19:30

Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field which is difficult to directly measure. Various analytic models and numerical codes exist but their results often drastically differ. Thus a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a non-linear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field which matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ~10 degree. This suggests that the CESE-MHD-NLFFF code, even without using the information of coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential-field give comparable results of mean misalignment angle (~30 degree). Thus further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

Authors: Aiying Duan, Chaowei Jiang, Qiang Hu, Huai Zhang, G. Allen Gary, S. T. Wu, Jinbin Cao

Publication Status: published in ApJ
Last Modified: 2017-10-11 06:20
Go to main E-Print page  Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare  A Magnetic Bald-Patch Flare in Solar Active Region 11117  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Frequency rising sub-THz emission from solar flare ribbons
Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University