E-Print Archive

There are 3914 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare View all abstracts by submitter

Chaowei Jiang   Submitted: 2017-10-10 19:32

As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during solar flare, and they are essential for magnetic energy dissipation in the solar corona by enabling magnetic reconnection. However static reconstruction of CS is rare, possibly due to limitation inherent in available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by SDO/HMI vector magnetogram. The CS is found to be associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration. This is evidenced by that the field lines traced from the CS to the photosphere form an X shape which nearly precisely reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS through reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of data-constrained MHD model in reproducing CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

Authors: Chaowei Jiang, Xiaoli Yan, Xueshang Feng, Aiying Duan, Qiang Hu, Pingbing Zuo, Yi Wang
Projects: SDO-AIA,SDO-HMI

Publication Status: Accepted by ApJ
Last Modified: 2017-10-11 06:20
Go to main E-Print page  Block-induced complex structures building the flare-productive solar active region 12673  Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions
Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
A Model of Zebra Patterns in Solar Radio Emission
Three-dimensional magnetic reconnection in a collapsing coronal loop system
On the Synthesis of GOES Light Curves from Numerical Models
Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares
2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using Fourier filtering
Non-damping oscillations at flaring loops
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory
Computation of Relative Magnetic Helicity in Spherical Coordinates

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University