E-Print Archive

There are 4423 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare View all abstracts by submitter

Chaowei Jiang   Submitted: 2017-10-10 19:32

As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during solar flare, and they are essential for magnetic energy dissipation in the solar corona by enabling magnetic reconnection. However static reconstruction of CS is rare, possibly due to limitation inherent in available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by SDO/HMI vector magnetogram. The CS is found to be associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration. This is evidenced by that the field lines traced from the CS to the photosphere form an X shape which nearly precisely reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS through reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of data-constrained MHD model in reproducing CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

Authors: Chaowei Jiang, Xiaoli Yan, Xueshang Feng, Aiying Duan, Qiang Hu, Pingbing Zuo, Yi Wang
Projects: SDO-AIA,SDO-HMI

Publication Status: Accepted by ApJ
Last Modified: 2017-10-11 06:20
Go to main E-Print page  Block-induced complex structures building the flare-productive solar active region 12673  Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Thomson scattering in the lower corona in the presence of sunspots
The Spatial and Temporal Variations of Turbulence in a Solar Flare
Investigations of Sizes and Dynamical Motions of Solar Photospheric Granules by a Novel Granular Segmenting Algorithm
Millennial oscillations of solar irradiance and magnetic field at Earth in 600-2600
Plasma turbulence generated in 3D current sheet with magnetic islands
Simultaneous ALMA-Hinode-IRIS observations on footpoint signatures of a soft X-ray loop-like microflare
Multiple electron acceleration instances during a series of solar
CME-Driven and Flare-Ignited Fast Magnetosonic Waves Successively Detected in a Solar Eruption
Sympathetic Filament Eruptions within a Fan-spine Magnetic System
Formation of Magnetic Flux Rope during Solar Eruption. I. Evolution of Toroidal Flux and Reconnection Flux
Stereoscopy of extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI
Solar Flare Effects on the Earth’s Lower Ionosphere
Measurements of Photospheric and Chromospheric Magnetic Field Structures Associated with Chromospheric Heating over a Solar Plage Region
Probing Current Sheet Instabilities from Flare Ribbon Dynamics
Global Nature of Solar Coronal Shock Waves shown by Inconsistency between EUV Waves and Type II Radio Bursts
Solar surges related to UV bursts: Characterization through k-means, inversions and density diagnostics
A revised cone model and its application to non-radial prominence eruptions
Zonal harmonics of solar magnetic field for solar cycle forecast
TESS observations of flares and quasi-periodic pulsations from low mass stars and potential impact on exoplanets
Kink oscillations of coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University