E-Print Archive

There are 3914 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars View all abstracts by submitter

Kosuke Namekata   Submitted: 2017-11-04 04:30

Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ ∝ E0.39 (Maehara et al. 2015, EP& S, 67, 59), similar to those of solar hard/soft X-ray flares: τ ∝ E0.2-0.33. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out a statistical research on 50 solar WLFs observed with SDO/HMI and examined the correlation between the energies and durations. As a result, the E-τ relation on solar WLFs (τ ∝ E0.38) is quite similar to that on stellar superflares (τ ∝ E0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy. (1) In solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect. (2) The distribution can be understood by applying a scaling law (τ ∝ E1/3B-5/3) derived from the magnetic reconnection theory. In this case, the observed superflares are expected to have 2-4 times stronger magnetic field strength than solar flares.

Authors: Kosuke Namekata, Takahito Sakaue, Kyoko Watanabe, Ayumi Asai, Hiroyuki Maehara, Yuta Notsu, Shota Notsu, Satoshi Honda, Takako Ishii, Kai Ikuta, Daisaku Nogami, Kazunari Shibata
Projects: GOES X-rays,Hinode/SOT,RHESSI,SDO-AIA,SDO-HMI

Publication Status: accepted for publication in ApJ
Last Modified: 2017-11-06 11:34
Go to main E-Print page  Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis  Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions
Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
A Model of Zebra Patterns in Solar Radio Emission
Three-dimensional magnetic reconnection in a collapsing coronal loop system
On the Synthesis of GOES Light Curves from Numerical Models
Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares
2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using Fourier filtering
Non-damping oscillations at flaring loops
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory
Computation of Relative Magnetic Helicity in Spherical Coordinates

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University