E-Print Archive

There are 3775 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars View all abstracts by submitter

Kosuke Namekata   Submitted: 2017-11-04 04:30

Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ ∝ E0.39 (Maehara et al. 2015, EP& S, 67, 59), similar to those of solar hard/soft X-ray flares: τ ∝ E0.2-0.33. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out a statistical research on 50 solar WLFs observed with SDO/HMI and examined the correlation between the energies and durations. As a result, the E-τ relation on solar WLFs (τ ∝ E0.38) is quite similar to that on stellar superflares (τ ∝ E0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy. (1) In solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect. (2) The distribution can be understood by applying a scaling law (τ ∝ E1/3B-5/3) derived from the magnetic reconnection theory. In this case, the observed superflares are expected to have 2-4 times stronger magnetic field strength than solar flares.

Authors: Kosuke Namekata, Takahito Sakaue, Kyoko Watanabe, Ayumi Asai, Hiroyuki Maehara, Yuta Notsu, Shota Notsu, Satoshi Honda, Takako Ishii, Kai Ikuta, Daisaku Nogami, Kazunari Shibata
Projects: GOES X-rays,Hinode/SOT,RHESSI,SDO-AIA,SDO-HMI

Publication Status: accepted for publication in ApJ
Last Modified: 2017-11-06 11:34
Go to main E-Print page  Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis  Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
Imaging Spectroscopy of Solar Radio Burst Fine Structures
On a small-scale EUV wave: the driving mechanism and the associated oscillating filament
Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer
On a solar blowout jet: driven mechanism and the formation of cool and hot components
Understanding the Role of Mass-Unloading in Filament Eruptions
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves
Characteristics of Sustained >100 γ-ray Emission Associated with Solar Flares
Characteristics that Produce White-Light Enhancements in Solar Flares Observed by Hinode/SOT
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube
High-wavenumber solar f-mode strengthening prior to active region formation
Block-induced complex structures building the flare-productive solar active region 12673
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops
A Magnetic Bald-Patch Flare in Solar Active Region 11117

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University