E-Print Archive

There are 4594 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis View all abstracts by submitter

Manuel Luna   Submitted: 2017-11-06 03:48

We follow the eruption of two related intermediate filaments observed in Hα (from GONG) and in EUV (from SDO/AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and around the decayed active region AR12486 on 2016 January 26. Our detailed study of the oscillation reveals that the periods of the oscillations are about one hour. In Hα the period decreases with time and exhibits strong damping. The analysis of 171A images shows that the oscillation has two phases, an initial long period phase and a subsequent oscillation with a shorter period. In this wavelength the damping appears weaker than in Hα. The velocity is the largest ever detected in a prominence oscillation, approximately 100 km s-1. Using SDO/HMI magnetograms we reconstruct the magnetic field of the filaments modeled as flux ropes by using a flux-rope insertion method. Applying seismological techniques we determine that the radii of curvature of the field lines in which cool plasma is condensed are in the range 75-120 Mm, in agreement with the reconstructed field. In addition, we infer a field strength of ≥7 to 30 Gauss, depending on the electron density assumed; that is also in agreement with the values from the reconstruction (8-20 Gauss). The poloidal flux is zero and the axis flux is of the order of 1020 to 1021 Mx, confirming the high shear existing even in a non-active filament.

Authors: M. Luna, Y. Su, B. Schmieder, R. Chandra, T. A. Kucera
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2017-11-06 11:34
Go to main E-Print page  The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares  Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University