E-Print Archive

There are 3775 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares View all abstracts by submitter

Jeffrey Reep   Submitted: 2017-11-06 08:09

GOES soft X-ray light curves are used to measure the timing and duration of solar flare emission. The timing and duration of the magnetic reconnection and subsequent energy release which drives solar flares are unknown, though the light curves are presumably related. It is therefore critical to understand the physics which connects the two: how does the time scale of reconnection produce an observed GOES light curve? In this work, we model the formation and expansion of an arcade of loops with a hydrodynamic model, which we then use to synthesize GOES light curves. We calculate the FWHM and the e-folding decay time of the light curves and compare them to the separation of the centroids of the two ribbons which the arcade spans, which is representative of the size scale of the loops. We reproduce a linear relation between the two, as found observationally in previous work. We show that this demonstrates a direct connection between the duration of energy release and the evolution of these light curves. We also show that the cooling processes of individual loops comprising the flare arcade directly affect the measured time scales. From the clear consistency between the observed and modeled linearity, we conclude that the primary factors that control the flare time scales are the duration of reconnection and the loop lengths.

Authors: Jeffrey W. Reep & Shin Toriumi
Projects: GOES X-rays

Publication Status: Accepted to ApJ
Last Modified: 2017-11-06 11:34
Go to main E-Print page  Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments  Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
Imaging Spectroscopy of Solar Radio Burst Fine Structures
On a small-scale EUV wave: the driving mechanism and the associated oscillating filament
Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer
On a solar blowout jet: driven mechanism and the formation of cool and hot components
Understanding the Role of Mass-Unloading in Filament Eruptions
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves
Characteristics of Sustained >100 γ-ray Emission Associated with Solar Flares
Characteristics that Produce White-Light Enhancements in Solar Flares Observed by Hinode/SOT
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube
High-wavenumber solar f-mode strengthening prior to active region formation
Block-induced complex structures building the flare-productive solar active region 12673
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops
A Magnetic Bald-Patch Flare in Solar Active Region 11117

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University