E-Print Archive

There are 3775 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Understanding the Role of Mass-Unloading in Filament Eruptions View all abstracts by submitter

Jack Jenkins   Submitted: 2017-11-08 06:12

We describe a partial filament eruption on 11 December 2011 which demonstrates that the inclusion of mass is an important next step for understanding solar eruptions. Observations from the Solar Terrestrial Relations Observatory Behind (STEREO-B) and the Solar Dynamics Observatory (SDO) spacecraft were used to remove line-of-sight projection effects in filament motion and correlate the effect of plasma dynamics with the evolution of the filament height. Flux cancellation and nearby flux emergence are shown to have played a role in increasing the height of the filament prior to eruption. The two viewpoints allow the quantitative estimation of a large mass-unloading, the subsequent radial expansion, and the eruption of the filament to be investigated. A 1.8 to 4.1 lower-limit ratio between gravitational and magnetic tension forces was found. We therefore conclude that following the loss-of-equilibrium of the flux rope, the radial expansion of the flux rope was restrained by the filamentary material until 70% of the mass had evacuated the structure through mass-unloading.

Authors: Jack Jenkins, David M Long, Lidia van Driel-Gesztelyi, Jack Carlyle
Projects: None

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2017-11-08 11:53
Go to main E-Print page  On a solar blowout jet: driven mechanism and the formation of cool and hot components  Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
Imaging Spectroscopy of Solar Radio Burst Fine Structures
On a small-scale EUV wave: the driving mechanism and the associated oscillating filament
Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer
On a solar blowout jet: driven mechanism and the formation of cool and hot components
Understanding the Role of Mass-Unloading in Filament Eruptions
Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments
The direct relation between the duration of magnetic reconnection and the evolution of GOES light curves in solar flares
Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis
Statistical Study of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves
Characteristics of Sustained >100 γ-ray Emission Associated with Solar Flares
Characteristics that Produce White-Light Enhancements in Solar Flares Observed by Hinode/SOT
Solar Energetic Particle Forecasting Algorithms and Associated False Alarms
Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube
High-wavenumber solar f-mode strengthening prior to active region formation
Block-induced complex structures building the flare-productive solar active region 12673
Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with an Homologous X-shaped Flare
Comparison of Two Coronal Magnetic Field Models for Reconstructing a Sigmoidal Solar Active Region With Coronal Loops
A Magnetic Bald-Patch Flare in Solar Active Region 11117

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University