E-Print Archive

There are 3835 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
On a solar blowout jet: driven mechanism and the formation of cool and hot components View all abstracts by submitter

Yuandeng Shen   Submitted: 2017-11-12 02:45

We present the observations of a blowout jet that experienced two distinct ejection stages. The first stage started from the emergence of a small positive magnetic polarity, which cancelled with the nearby negative magnetic field and caused the rising of a mini-filament and its confining loops. This further resulted in a small jet due to the magnetic reconnection between the rising confining loops and the overlying open field. The second ejection stage was mainly due to the successive removal of the confining field by the reconnection. Thus that the filament erupted and the erupting cool filament material directly combined with the hot jet originated form the reconnection region and therefore formed the cool and hot components of the blowout jet. During the two ejection stages, cool Hα jets are also observed cospatial with their coronal counterparts, but their appearance times are earlier than the hot coronal jets a few minutes. Therefore, the hot coronal jets are possibly caused by the heating of the cool Hα jets, or the rising of the reconnection height from chromosphere to the corona. The scenario that magnetic reconnection occurred between the confining loops and the overlying open loops are supported by many observational facts, including the bright patches on the both sides of the mini-filament, hot plasma blobs along the jet body, and periodic metric radio type III bursts at the very beginnings of the two stages. The evolution and characteristics of these features manifest the detailed non-linear process in the magnetic reconnection.

Authors: Shen, Yuandeng; Liu, Ying D.; Su, Jiangtao; Qu, Zhining; Tian, Zhanjun
Projects: SDO-AIA

Publication Status: accepted by ApJ
Last Modified: 2017-11-15 12:19
Go to main E-Print page  Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer  Understanding the Role of Mass-Unloading in Filament Eruptions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares
Unambiguous Evidence of Filament Splitting-Induced Partial Eruptions
On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone
Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnotics
Plasma evolution within an erupting coronal cavity
Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event
Flux Rope Breaking and Formation of a Rotating Blowout Jet
On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory
Two-Phase Heating in Flaring Loops
Evidence For The Magnetic Breakout Model in an Equatorial Coronal-Hole Jet
Spontaneous flux concentrations from the negative effective magnetic pressure instability beneath a radiative stellar surface
Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth
Evaluation of Applicability of a Flare Trigger Model based on Comparison of Geometric Structures
Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model
Formation and Dynamics of a Solar Eruptive Flux Tube
The Instruments and Capabilities of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats
Fine Structures of Solar Radio Type III Bursts and their Possible Relationship with Coronal Density Turbulence
Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS
Observations of Electron-driven Evaporation during a Flare Precursor

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University