E-Print Archive

There are 3969 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
On a solar blowout jet: driven mechanism and the formation of cool and hot components View all abstracts by submitter

Yuandeng Shen   Submitted: 2017-11-12 02:45

We present the observations of a blowout jet that experienced two distinct ejection stages. The first stage started from the emergence of a small positive magnetic polarity, which cancelled with the nearby negative magnetic field and caused the rising of a mini-filament and its confining loops. This further resulted in a small jet due to the magnetic reconnection between the rising confining loops and the overlying open field. The second ejection stage was mainly due to the successive removal of the confining field by the reconnection. Thus that the filament erupted and the erupting cool filament material directly combined with the hot jet originated form the reconnection region and therefore formed the cool and hot components of the blowout jet. During the two ejection stages, cool Hα jets are also observed cospatial with their coronal counterparts, but their appearance times are earlier than the hot coronal jets a few minutes. Therefore, the hot coronal jets are possibly caused by the heating of the cool Hα jets, or the rising of the reconnection height from chromosphere to the corona. The scenario that magnetic reconnection occurred between the confining loops and the overlying open loops are supported by many observational facts, including the bright patches on the both sides of the mini-filament, hot plasma blobs along the jet body, and periodic metric radio type III bursts at the very beginnings of the two stages. The evolution and characteristics of these features manifest the detailed non-linear process in the magnetic reconnection.

Authors: Shen, Yuandeng; Liu, Ying D.; Su, Jiangtao; Qu, Zhining; Tian, Zhanjun
Projects: SDO-AIA

Publication Status: accepted by ApJ
Last Modified: 2017-11-15 12:19
Go to main E-Print page  Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer  Understanding the Role of Mass-Unloading in Filament Eruptions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun
Lyman Continuum Observations of Solar Flares Using SDO/EVE
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum
First high-resolution look at the quiet Sun with ALMA at 3 mm
Dispersive shock waves in partially ionised plasmas
Frequency rising sub-THz emission from solar flare ribbons

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University