E-Print Archive

There are 4524 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves View all abstracts by submitter

David Long   Submitted: 2017-11-17 08:38

Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high cadence synoptic data provided by the Solar Dynamic Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) are found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in-situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.

Authors: David M. Long, Pearse Murphy, Georgina Graham, Eoin P. Carley, David Pérez-Suárez
Projects: GOES X-rays,SDO-AIA,SoHO-LASCO,Wind

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2017-11-17 14:24
Go to main E-Print page  Development of Solar Flares and Features of the Fine Structure of Solar Radio Emission  Imaging Spectroscopy of Solar Radio Burst Fine Structures  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University