E-Print Archive

There are 3969 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Development of Solar Flares and Features of the Fine Structure of Solar Radio Emission View all abstracts by submitter

Gennady Chernov   Submitted: 2017-11-22 02:59

The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structure, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.

Authors: G. P. Chernov, V. V. Fomichev, Y. Yan, B. Tan, Ch. Tan, and Q. Fu
Projects: None

Publication Status: Accepted in Geomagnetism and Aeronomy, 2017, N6
Last Modified: 2017-11-22 13:20
Go to main E-Print page  Simulating coronal loop implosion and compressible wave modes in a flare hit active region  A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun
Lyman Continuum Observations of Solar Flares Using SDO/EVE
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum
First high-resolution look at the quiet Sun with ALMA at 3 mm
Dispersive shock waves in partially ionised plasmas
Frequency rising sub-THz emission from solar flare ribbons

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University