E-Print Archive

There are 3969 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events View all abstracts by submitter

Amir Caspi   Submitted: 2017-11-22 16:58

We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite. While NuSTAR was designed as an astrophysics mission, it can observe the Sun above 2 keV with unprecedented sensitivity due to its pioneering use of focusing optics. NuSTAR first observed quiet Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet Sun transient brightenings on time scales of 100 s and set upper limits on emission in two energy bands. We set 2.5-4 keV limits on brightenings with time scales of 100 s, expressed as the temperature T and emission measure EM of a thermal plasma. We also set 10-20 keV limits on brightenings with time scales of 30, 60, and 100 s, expressed as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the NuSTAR sensitivity by over two orders of magnitude due to higher instrument livetime and reduced solar background.

Authors: Andrew J. Marsh, David M. Smith, Lindsay Glesener, Iain G. Hannah, Brian W. Grefenstette, Amir Caspi, Säm Krucker, Hugh S. Hudson, Kristin K. Madsen, Stephen M. White, Matej Kuhar, Paul J. Wright, Steven E. Boggs, Finn E. Christensen, William W. Craig, Charles J. Hailey, Fiona A. Harrison, Daniel Stern, William W. Zhang
Projects: NuSTAR,RHESSI,Yohkoh-SXT

Publication Status: Published -- Marsh, A. J., et al. 2017, ApJ, 849, 131; DOI 10.3847/1538-4357/aa9122
Last Modified: 2017-11-25 10:03
Go to main E-Print page  Super-Flaring Active Region 12673 Has One of the Fastest Magnetic Flux Emergence Ever Observed  Solar-wind predictions for the Parker Solar Probe orbit  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun
Lyman Continuum Observations of Solar Flares Using SDO/EVE
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum
First high-resolution look at the quiet Sun with ALMA at 3 mm
Dispersive shock waves in partially ionised plasmas
Frequency rising sub-THz emission from solar flare ribbons

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University