E-Print Archive

There are 3969 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Fluting Modes in Transversely Nonuniform Solar Flux Tubes View all abstracts by submitter

Roberto Soler   Submitted: 2017-11-23 03:49

Magnetohydrodynamic waves of different types are frequently observed in magnetic flux tubes of the solar atmosphere and are often modeled using simple models. In the standard flux tube model made of a straight uniform tube with an abrupt boundary, transverse wave modes are classified according to their azimuthal wavenumber, m. Sausage (m = 0) and kink (m = 1) modes produce pulsations of the cross section and transverse oscillations of tube axis, respectively. Both sausage and kink modes have been observed in the solar atmosphere. Fluting (m≥ 2) modes produce perturbations that are essentially confined around the boundary of the tube, i.e., they have a strong surface-like character. Unlike sausage and kink modes, the detection of fluting modes remains elusive. Here we show that the inclusion of transverse inhomogeneity in the flux tube model dramatically affects the properties of fluting modes. Even in a thin tube, kink and fluting modes are no longer degenerate in frequency when the tube has a smooth boundary. In addition, fluting modes become heavily damped by resonant absorption in a timescale shorter than the oscillation period. The perturbations loose their global shape and their distinctive surface-like appearance. As a consequence of that, we argue that nonuniform flux tubes with smooth boundaries may not be able to support fluting-like perturbations as coherent, global modes.

Authors: Roberto Soler
Projects: None

Publication Status: Published in ApJ
Last Modified: 2017-11-25 10:02
Go to main E-Print page  Solar Energetic Particle Forecasting Algorithms and Associated False Alarms  Super-Flaring Active Region 12673 Has One of the Fastest Magnetic Flux Emergence Ever Observed  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
CME-driven shock and Type II solar radio burst band-splitting
Signatures of magnetic reconnection at the footpoints of fan shape jets on a light bridge driven by photospheric convective motions
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun
Lyman Continuum Observations of Solar Flares Using SDO/EVE
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum
First high-resolution look at the quiet Sun with ALMA at 3 mm
Dispersive shock waves in partially ionised plasmas
Frequency rising sub-THz emission from solar flare ribbons

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University